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We present our results for ratios of higher order fluctuations of electric charge as functions of the

temperature. These results are obtained in a system of 2þ 1 quark flavors at physical quark masses and

continuum extrapolated. We compare them to preliminary data on higher order moments of the net electric

charge distribution from the STAR collaboration. This allows us to determine the freeze-out temperature

and chemical potential from first principles. We also show continuum-extrapolated results for ratios of

higher order fluctuations of baryon number. These will allow us to test the consistency of the approach, by

comparing them to the corresponding experimental data (once they become available) and thus, extracting

the freeze-out parameters in an independent way.
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The QCD transition from a hadronic confined system to
a partonic one at zero baryon-chemical potential is an
analytic crossover, as was unambiguously shown by lattice
QCD simulations [1]. This feature extends to small chemi-
cal potentials covered by the high energy runs at the
Relativistic Heavy Ion Collider (RHIC). The possibility
that the transition becomes first order at large chemical
potentials has triggered the low energy runs at RHIC, soon
to be followed by the Compressed Baryonic Matter experi-
ment at the GSI, Darmstadt, Germany, in search for the
elusive critical point. In order to successfully spot its
position, one needs to define observables which are sensi-
tive to the change in the order of the phase transition.
Event-by-event higher order fluctuations of conserved
charges are expected to diverge in the presence of a first
order phase transition and have, therefore, been proposed
long ago to this purpose [2–4]. As a consequence, experi-
mental results for these observables are becoming available
at several collision energies, covering different regions of
the QCD phase diagram [5,6]. Recently, further interest
towards fluctuations of conserved charges and their ratios
has been stimulated even at � ¼ 0, following the idea that
the freeze-out parameters can be extracted by comparing
their experimental value to lattice QCD results [7,8]. This
comparison allows us to extract the temperature and
baryon-chemical potential at freeze-out from first prin-
ciples, without the need of relying on a phenomenological
model such as the Hadron Resonance Gas (HRG). This
also allows us to test the assumption that the equilibrium
system simulated on the lattice is suitable to describe the
experimentally measured fluctuations, since in principle,
nonequilibrium effects and final-state interactions in
the hadronic phase might become relevant. The present
level of precision reached by lattice QCD simulations,

performed at physical quark masses and continuum
extrapolated, is very timely and allows this kind of com-
parison between experimental data and lattice QCD results
for the first time.
In this Letter, we show the first continuum-extrapolated

results for higher order fluctuations of electric charge and
extract the freeze-out conditions by comparing our results
to preliminary data by the STAR collaboration at RHIC
[5,6]. This follows our previous work on second-order
fluctuations of conserved charges [9]. We also present
results for baryon number fluctuations, which can be com-
pared to the experimental data, once they become available
(so far, only proton fluctuations have been measured in
experiments [10], and the issue whether one can extract
baryon number fluctuations from them is still open
[11,12]). Our simulations are performed in a system of
2þ 1 quark flavors at the physical point, i.e., with physical
MK=fK and M�=fK ratios at each lattice spacing, which
are realized at the strange- over light-quark mass ratio
ms=mu;d ’ 28.
The continuum extrapolation is mainly performed on the

basis of five lattice spacings, corresponding to temporal
lattice extents of Nt ¼ 6, 8, 10, 12, 16 (around Tc these
extents result in lattice spacings of a ¼ 0:22, 0.16, 0.13,
0.11, and 0.08 fm, respectively). At every lattice spacing
and temperature, we analyzed every 10th configuration in
the rational hybrid Monte Carlo streams with 128. . .256
quartets of random sources. The statistics for each point is
shown in Fig. 1. We follow the extrapolation strategy that
we have discussed in Ref. [9] and perform several possible
continuum fits (with and without a beyond-a2 term,
keeping or dropping the coarsest lattice, using tree-level
improvement [13] or not, fitting the observable or the
reciprocal of the observable, choosing between two
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possible interpolations). Weighting these continuum
results by the goodness of the fit, a histogram is formed,
the width of which defines the systematic error (for details,
see Ref. [14]). In this Letter, we show the combined
systematic and statistical errors on the continuum data.

Similarly to previous works, we choose a tree-level
Symanzik improved gauge and a stout-improved staggered
fermionic action (see Ref. [15] for details). The stout-
smearing [16] reduces taste violation (this kind of smearing

has one of the smallest taste violations among the ones
used in the literature for large scale thermodynamic simu-
lations, together with the HISQ action [17,18] used by the
hotQCD collaboration). This lattice artifact needs to be
kept under control when studying higher order fluctuations
of electric charge, which are pion dominated at small
temperatures, and thus, particularly sensitive to this issue.
The observables under study are defined as:

�BSQ
lmn

Tlþmþn
¼ @lþmþnðp=T4Þ

@ð�B=TÞl@ð�S=TÞm@ð�Q=TÞn
; (1)

and they are related to the moments of the distributions of
the corresponding conserved charges by

mean: M ¼ �1; variance: �2 ¼ �2;

skewness: S ¼ �3=�
3=2
2 ; kurtosis: � ¼ �4=�

2
2:

(2)

With these moments, we can express the volume indepen-
dent ratios

S� ¼ �3=�2; ��2 ¼ �4=�2;

M=�2 ¼ �1=�2; S�3=M ¼ �3=�1:
(3)

The experimental conditions are such, that the three
chemical potentials �B, �Q, and �S are not independent of

each other: the finite baryon density in the system is gener-
ated by the nucleon stopping in the collision region, and
is therefore due to light quarks only. Strangeness conserva-
tion then implies that the strangeness density hnSi ¼ 0.
Similarly, the initial isospin asymmetry of the colliding
nuclei yields a relationship between the electric charge
and baryon-number densities: hnQi ¼ Z=AhnBi. For Au-Au
and Pb-Pb collisions, a good approximation is to assume
Z=A ¼ 0:4.
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FIG. 2 (color online). Upper panels: leading order contribution
in �B for the strangeness (upper figure) and the electric charge
(lower figure) chemical potentials. The lower panels show the
corresponding NLO contributions. In all panels, the black dots
correspond to the continuum extrapolated results. The BNL-
Bielefeld results are shown as blue pentagons.
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FIG. 1 (color online). Number of analyzed configurations for
each temperature and each lattice spacing. The configurations
have been saved with a separation of 10 trajectories. Each
configuration was analyzed by ð128 . . . 256Þ � 4 random sources.
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FIG. 3 (color online). RQ
31: the colored symbols correspond to

lattice QCD simulations at finite-Nt. Black points correspond to
the continuum extrapolation; blue pentagons are the Nt ¼ 8 results
from the BNL-Bielefeld collaboration [8]. The yellow band is the
preliminary STAR measurement of SQ�

3
Q=MQ [6]: it has been

obtained by averaging the two most central measurements from
STAR over three collision energies:

ffiffiffi

s
p ¼ 27, 39, 62.4 GeV.

PRL 111, 062005 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

9 AUGUST 2013

062005-2



Therefore, the dependence of�Q and�S on�B needs to

be defined so that these conditions are satisfied. We take
care of this by Taylor expanding the densities with respect
to the three chemical potentials up to order �3

B [8]:

�QðT;�BÞ ¼ q1ðTÞ�B þ q3ðTÞ�3
B þ . . . ;

�SðT;�BÞ ¼ s1ðTÞ�B þ s3ðTÞ�3
B þ . . .

(4)

These equations define q1, q3, and s1 and s3, respectively.
Our continuum extrapolated data for the functions q1ðTÞ,
q3ðTÞ, s1ðTÞ, s3ðTÞ are shown in Fig. 2. Our data are
compared to the BNL-Bielefeld group’s result, where q1

and s1 was continuum extrapolated. They obtained q3 and
s3 from Nt ¼ 8 lattices using the HISQ action [8].
The quantities that we look at, in order to extract the

freeze-out temperature and baryon chemical potential, are

the ratios �Q
3 =�

Q
1 and �Q

1 =�
Q
2 at some (�B, �Q, �S) point,

which is defined by the physical conditions discussed in the

previous paragraph and given by Eq. (4). We look at ratios

because they are volume-independent, and also because

they are directly related to the moments of charge distri-

bution by Eqs. (3). The first terms of their Taylor expansion

around �B ¼ 0 read:

RQ
31ðT;�BÞ ¼ �Q

3 ðT;�BÞ
�Q
1 ðT;�BÞ

¼ �QB
31 ðT; 0Þ þ �Q

4 ðT; 0Þq1ðTÞ þ �QS
31 ðT; 0Þs1ðTÞ

�QB
11 ðT; 0Þ þ �Q

2 ðT; 0Þq1ðTÞ þ �QS
11 ðT; 0Þs1ðTÞ

þOð�2
BÞ;

RQ
12ðT;�BÞ ¼ �Q

1 ðT;�BÞ
�Q
2 ðT;�BÞ

¼ �QB
11 ðT; 0Þ þ �Q

2 ðT; 0Þq1ðTÞ þ �QS
11 ðT; 0Þs1ðTÞ

�Q
2 ðT; 0Þ

�B

T
þOð�3

BÞ:
(5)

The leading order in �Q
3 =�

Q
1 is independent of �B, which

allows us to use RQ
31 to extract the freeze-out temperature.

Once Tf has been obtained with this method, the ratio RQ
12

can then be used to determine �B. Notice that in Eq. (5),
we write the expansion of RQ

12, but in the plots, we will
show our results up to NLO.

In Fig. 3, we show the ratio RQ
31 as a function of the

temperature. The continuum extrapolation, shown in the
figure as black dots, is performed on the basis of five lattice
spacings. Results from the BNL-Bielefeld collaboration
corresponding to Nt ¼ 8 (from Ref. [8]) are also shown
for comparison. The yellow band indicates the experimen-

tal value for RQ
31 from the STAR collaboration [6]. It has

been obtained by averaging the two most central measure-
ments from STAR over three collision energies:

ffiffiffi

s
p ¼ 27,

39, 62.4 GeV. We assume that this average safely allows us
to determine the freeze-out temperature, since the curva-
ture of the phase diagram is very small around �B ¼ 0
[19]; therefore, we expect a small variation of Tf over the

chemical potential range corresponding to these three
energies. Due to the big error bar in the experimental
measurement and to the uncertainty in the lattice data at
small temperatures, we can only get an upper limit for the
freeze-out temperature: so far it appears that the freeze-out
takes place at a temperature Tf & 157 MeV. (Allowing for

a two-sigma deviation both for the lattice simulation as
well as the experimental data, the highest possible freeze-
out temperature is 161 MeV.)

In Fig. 4, we show our results for RQ
12 as a function of the

baryon chemical potential: the different curves correspond
to different temperatures, in the range of Tf determined

from RQ
31. The three STAR measurements, from Ref. [6],

correspond to the collision energies
ffiffiffi

s
p ¼ 27, 39, 62.4.

 0

0.02

0.04

0.06

0.08

 0.1

0.12

0.14

 0  20  40  60  80  100  120  140  160  180  200

µB [MeV]

RQ
12=MQ /σQ

2

STAR, 27 GeV

STAR, 39 GeV

STAR, 62.4 GeV

T =145 MeV
T =150 MeV
T =155 MeV
T =160 MeV

FIG. 4 (color online). RQ
12 as a function of �B: the different

colors correspond to the continuum extrapolated lattice QCD
results, calculated at different temperatures. The three points
correspond to preliminary STAR data for MQ=�

2
Q at different

collision energies:
ffiffiffi

s
p ¼ 27, 39, 62.4, from Ref. [6].

TABLE I. Freeze-out baryon chemical potentials vs the corre-
sponding collision energy of the three STAR measurements from
Ref. [6]. The errors come from the uncertainty of the freeze-out
temperature, the lattice statistics, and the experimental error,
respectively. Notice that from Fig. 3, we were only able to obtain
an upper limit on Tf. The values of �B and the error-bars in this

table assume that Tf is between 145 and 160 MeV, this uncer-

tainty dominates the overall errors. (Doubling the experimental
as well as lattice errors would increase full error only by a factor
of 1.5.)

ffiffiffi

s
p

[GeV] �f
B [MeV]

62.4 44(3)(1)(2)

39 75(5)(1)(2)

27 95(6)(1)(5)

ðÞ�TðÞlatðÞexp
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Taking into account the limit on Tf that we obtained

through RQ
31, the three values of �B that we extract from

this observable are listed in Table I. The experimental
evidence for the freeze-out temperature was just an upper
bound (cf. Fig. 3); thus, using the data in Fig. 4 can only
provide for the�B prediction a lower bound. In Table I, we
assume that Tf > 145 MeV. The uncertainty in the freeze-

out temperature is the dominant source of error.
Note that these chemical potentials differ from the

results of the statistical hadronization model [20,21].
Also, the typical freeze-out temperatures from the statisti-
cal fits lie above the upper bound found in this Letter.
In Fig. 5, we show our results for RB

31 as a function of the

temperature, while in Fig. 6, we show RB
12 for different

temperatures, as a function of�B. Their Taylor expansions
around �B ¼ 0 read:

RB
31ðT;�BÞ ¼ �B

3 ðT;�BÞ
�B
1 ðT;�BÞ ¼

�B
4 ðT; 0Þ þ �BQ

31 ðT; 0Þq1ðTÞ þ �BS
31 ðT; 0Þs1ðTÞ

�B
2 ðT; 0Þ þ �BQ

11 ðT; 0Þq1ðTÞ þ �BS
11 ðT; 0Þs1ðTÞ

þOð�2
BÞ;

RB
12ðT;�BÞ ¼ �B

1 ðT;�BÞ
�B
2 ðT;�BÞ ¼

�B
2 ðT; 0Þ þ �BQ

11 ðT; 0Þq1ðTÞ þ �BS
11 ðT; 0Þs1ðTÞ

�B
2 ðT; 0Þ

�B

T
þOð�3

BÞ:

Therefore, similarly to the electric charge fluctuations,
RB
31 allows us to extract Tf and from RB

12, we can then
obtain �B. This will allow us to independently extract
the freeze-out temperature and chemical potential by
comparing them to the corresponding experimental
values, once they become available. Notice that the
ordering of the temperatures in Figs. 4 and 6 is opposite.
RB
12 might in future be used to set an upper bound for

�B. This cross-check is of fundamental importance: an
inconsistency between the two sets of freeze-out pa-
rameters obtained from the electric charge and baryon

number fluctuations might signal that it is not possible to
treat the experimental system in terms of lattice QCD
simulations in thermal equilibrium.
In Fig. 7, we show the ratio RB

42 ¼ �B
4 ðT;�BÞ=

�B
2 ðT;�BÞ as a function of the temperature. This observ-

able corresponds to ��2 of the baryon number distribution.
It will allow us to further independently extract Tf. Notice

that, in the case of baryon number, the observables are
essentially flat in the hadronic phase: if the experimental
value should lie in the transition region (T * 150 MeV),
we will be able to accurately determine Tf, if it lies in the
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hadronic phase, we will only be able to provide an upper
limit for the freeze-out temperature.

In conclusion, we have presented our continuum-
extrapolated results for ratios of higher-order fluctuations
of electric charge and baryon number and compared
them to recently measured moments of electric charge
distribution from the STAR collaboration. This procedure
has allowed us to extract, for the first time, the values for

the freeze-out parameters Tf and �f
B from first principles.

So far, it is only possible to extract an upper limit for Tf,

due to both experimental and lattice QCD uncertainties.
The value that we obtain, Tf & 157 MeV, is well within

the transition range predicted from lattice QCD simula-
tions [22]. This is compatible with the expectation that
freeze-out occurs just below the transition [23].
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