337 research outputs found

    Fluid-sensitive migration mechanisms predict association between metastasis and high interstitial fluid pressure in pancreatic cancer

    Get PDF
    A remarkable feature in pancreatic cancer is the propensity to metastasize early, even for small, early stage cancers. We use a computer-based pancreatic model to simulate tumor progression behavior where fluid-sensitive migration mechanisms are accounted for as a plausible driver for metastasis. The model has been trained to comply with in vitro results to determine input parameters that characterize the migration mechanisms. To mimic previously studied preclinical xenografts we run the computer model informed with an ensemble of stochastic-generated realizations of unknown parameters related to tumor microenvironment only constrained such that pathological realistic values for interstitial fluid pressure (IFP) are obtained. The in silico model suggests the occurrence of a steady production of small clusters of cancer cells that detach from the primary tumor and form isolated islands and thereby creates a natural prerequisite for a strong invasion into the lymph nodes and venous system. The model predicts that this behavior is associated with high interstitial fluid pressure (IFP), consistent with published experimental findings. The continuum-based model is the first to explain published results for preclinical models which have reported associations between high IFP and high metastatic propensity and thereby serves to shed light on possible mechanisms behind the clinical aggressiveness of pancreatic cancer.publishedVersio

    Spatio-Temporal Variability of Suspended Particulate Matter in a High-Arctic Estuary (Adventfjorden, Svalbard) Using Sentinel-2 Time-Series

    Get PDF
    Arctic coasts, which feature land-ocean transport of freshwater, sediments, and other terrestrial material, are impacted by climate change, including increased temperatures, melting glaciers, changes in precipitation and runoff. These trends are assumed to affect productivity in fjordic estuaries. However, the spatial extent and temporal variation of the freshwater-driven darkening of fjords remain unresolved. The present study illustrates the spatio-temporal variability of suspended particulate matter (SPM) in the Adventfjorden estuary, Svalbard, using in-situ field campaigns and ocean colour remote sensing (OCRS) via high-resolution Sentinel-2 imagery. To compute SPM concentration (CSPMsat), a semi-analytical algorithm was regionally calibrated using local in-situ data, which improved the accuracy of satellite-derived SPM concentration by ~20% (MRD). Analysis of SPM concentration for two consecutive years (2019, 2020) revealed strong seasonality of SPM in Adventfjorden. Highest estimated SPM concentrations and river plume extent (% of fjord with CSPMsat > 30 mg L−1) occurred during June, July, and August. Concurrently, we observed a strong relationship between river plume extent and average air temperature over the 24 h prior to the observation (R2 = 0.69). Considering predicted changes to environmental conditions in the Arctic region, this study highlights the importance of the rapidly changing environmental parameters and the significance of remote sensing in analysing fluxes in light attenuating particles, especially in the coastal Arctic Ocean.publishedVersio

    Seasonal Enzyme Activities of Sympatric Calanus glacialis and C. finmarchicus in the High-Arctic

    Get PDF
    In the Arctic shelf seas, the mesozooplankton biomass is dominated by the arctic copepod Calanus glacialis, but its boreal congeneric C. finmarchicus is expanding northwards. Even though it is already there, C. finmarchicus may not be able to truly establish itself in the Arctic seas and potentially replace C. glacialis. We compared metabolic and digestive enzyme activities of sympatric C. glacialis and C. finmarchicus from Isfjorden, Svalbard and off-shelf north of Svalbard. The seasonal regulation of anabolic and catabolic enzyme activities was generally similar for the two species, but with some interspecific differences corresponding to their ontogeny. Wake-up from overwintering started earlier in adults of C. glacialis than in C. finmarchicus, while the onset of dormancy started early in the overwintering stages of both species. Furthermore, C. glacialis showed an earlier and higher mobilization of lipase enzyme activities, indicating higher efficiency in assimilating dietary lipids compared to C. finmarchicus. Similar population sizes and population structures for C. finmarchicus off-shelf north of Svalbard and in Isfjorden support a similar origin. Still, C. finmarchicus was able to match regulation of enzyme activities to the bloom even though the bloom peaked approximately a month later off-shelf north of Svalbard, indicating that food availability is an important signal for the final step of termination of diapause. Even though the two species largely follow the same patterns of metabolic enzyme activities, the more efficient lipid anabolism of C. glacialis may give it an advantage over C. finmarchicus in high-Arctic unpredictable environments with short-pulsed primary production regimes.publishedVersio

    Simultaneous Resection of Primary Colorectal Cancer and Synchronous Liver Metastases: Contemporary Practice, Evidence and Knowledge Gaps

    Get PDF
    The timing of surgical resection of synchronous liver metastases from colorectal cancer has been debated for decades. Several strategies have been proposed, but high-level evidence remains scarce. Simultaneous resection of the primary tumour and liver metastases has been described in numerous retrospective audits and meta-analyses. The potential benefits of simultaneous resections are the eradication of the tumour burden in one procedure, overall shorter procedure time, reduced hospital stay with the likely benefits on quality of life and an expected reduction in the use of health care services compared to staged procedures. However, concerns about accumulating complications and oncological outcomes remain and the optimal selection criteria for whom simultaneous resections are beneficial remains undetermined. Based on the current level of evidence, simultaneous resection should be restricted to patients with a limited liver tumour burden. More high-level evidence studies are needed to evaluate the quality of life, complication burden, oncological outcomes, as well as overall health care implications for simultaneous resections

    Temporal and spatial trends in marine carbon isotopes in the Arctic Ocean and implications for food web studies

    Get PDF
    The Arctic is undergoing unprecedented environmental change. Rapid warming, decline in sea ice extent, increase in riverine input, ocean acidification and changes in primary productivity are creating a crucible for multiple concurrent environmental stressors, with unknown consequences for the entire arctic ecosystem. Here, we synthesised 30 years of data on the stable carbon isotope (δ13 C) signatures in dissolved inorganic carbon (δ13 C-DIC; 1977 to 2014), marine and riverine particulate organic carbon (δ13 C-POC; 1986 to 2013) and tissues of marine mammals in the Arctic. δ13 C values in consumers can change as a result of environmentally driven variation in the δ13 C values at the base of the food web or alteration in the trophic structure, thus providing a method to assess the sensitivity of food webs to environmental change. Our synthesis reveals a spatially heterogeneous and temporally evolving δ13 C baseline, with spatial gradients in the δ13 C-POC values between arctic shelves and arctic basins likely driven by differences in productivity and riverine and coastal influence. We report a decline in δ13 C-DIC values (-0.011 ‰ y-1 ) in the Arctic, reflecting increasing anthropogenic carbon dioxide (CO2 ) in the Arctic Ocean (i.e. Suess effect), which is larger than predicted. The larger decline in δ13 C-POC values and δ13 C in arctic marine mammals reflects the anthropogenic CO2 signal as well as the influence of a changing arctic environment. Combining the influence of changing sea ice conditions and isotopic fractionation by phytoplankton, we explain the decadal decline in δ13 C-POC values in the Arctic Ocean and partially explain the δ13 C values in marine mammals with consideration of time-varying integration of δ13 C values. The response of the arctic ecosystem to ongoing environmental change is stronger than we would predict theoretically, which has tremendous implications for the study of food webs in the rapidly changing Arctic Ocean

    Postglacial expansion of the arctic keystone copepod calanus glacialis

    Get PDF
    Calanus glacialis, a major contributor to zooplankton biomass in the Arctic shelf seas, is a key link between primary production and higher trophic levels that may be sensitive to climate warming. The aim of this study was to explore genetic variation in contemporary populations of this species to infer possible changes during the Quaternary period, and to assess its population structure in both space and time. Calanus glacialis was sampled in the fjords of Spitsbergen (Hornsund and Kongsfjorden) in 2003, 2004, 2006, 2009 and 2012. The sequence of a mitochondrial marker, belonging to the ND5 gene, selected for the study was 1249 base pairs long and distinguished 75 unique haplotypes among 140 individuals that formed three main clades. There was no detectable pattern in the distribution of haplotypes by geographic distance or over time. Interestingly, a Bayesian skyline plot suggested that a 1000-fold increase in population size occurred approximately 10,000 years before present, suggesting a species expansion after the Last Glacial Maximum.GAME from the National Science Centre, the Polish Ministry of Science and Higher Education Iuventus Plus [IP2014 050573]; FCT-PT [CCMAR/Multi/04326/2013]; [2011/03/B/NZ8/02876
    corecore