835 research outputs found

    Cosmological Models with Shear and Rotation

    Get PDF
    Cosmological models involving shear and rotation are considered, first in the General Relat ivistic and then in the Newtonian framework with the aim of investigating singularities in them by using numerical and analytical techniques. The dynamics of these rotating models ar e studied. It is shown that singularities are unavoidable in such models and that the centr ifugal force arising due to rotation can never overcome the gravitational and shearing forc e over a length of time.Comment: 17 pages, 6 figures Journal Ref: J. Astrophys. Astr. (1999) 20, 79-8

    Cosmological Inhomogeneities with Bose-Einstein Condensate Dark Matter

    Full text link
    We consider the growth of cosmological perturbations to the energy density of dark matter during matter domination when dark matter is a scalar field that has undergone Bose-Einstein condensation. We study these inhomogeneities within the framework of both Newtonian gravity, where the calculation and results are more transparent, and General Relativity. The direction we take is to derive analytical expressions, which can be obtained in the small pressure limit. Throughout we compare our results to those of the standard cosmology, where dark matter is assumed pressureless, using our analytical expressions to showcase precise differences. We find, compared to the standard cosmology, that Bose-Einstein condensate dark matter leads to a scale factor, gravitational potential and density contrast that increase at faster rates.Comment: 17 pages, 2 figures; typos corrected, references adde

    Pressure as a Source of Gravity

    Full text link
    The active mass density in Einstein's theory of gravitation in the analog of Poisson's equation in a local inertial system is proportional to ρ+3p/c2\rho+3p/c^2. Here ρ\rho is the density of energy and pp its pressure for a perfect fluid. By using exact solutions of Einstein's field equations in the static case we study whether the pressure term contributes towards the mass

    Mathisson-Papapetrou equations in metric and gauge theories of gravity in a Lagrangian formulation

    Full text link
    We present a simple method to derive the semiclassical equations of motion for a spinning particle in a gravitational field. We investigate the cases of classical, rotating particles (pole-dipole particles), as well as particles with intrinsic spin. We show that, starting with a simple Lagrangian, one can derive equations for the spin evolution and momentum propagation in the framework of metric theories of gravity and in theories based on a Riemann-Cartan geometry (Poincare gauge theory), without explicitly referring to matter current densities (spin and energy-momentum). Our results agree with those derived from the multipole expansion of the current densities by the conventional Papapetrou method and from the WKB analysis for elementary particles.Comment: 28 page

    Mass and Spin of Poincare Gauge Theory

    Get PDF
    We discuss two expressions for the conserved quantities (energy momentum and angular momentum) of the Poincar\'e Gauge Theory. We show, that the variations of the Hamiltonians, of which the expressions are the respective boundary terms, are well defined, if we choose an appropriate phase space for asymptotic flat gravitating systems. Furthermore, we compare the expressions with others, known from the literature.Comment: 16 pages, plain-tex; to be published in Gen. Rel. Gra

    Black Holes with Weyl Charge and Non-Riemannian Waves

    Get PDF
    A simple modification to Einstein's theory of gravity in terms of a non-Riemannian connection is examined. A new tensor-variational approach yields field equations that possess a covariance similar to the gauge covariance of electromagnetism. These equations are shown to possess solutions analogous to those found in the Einstein-Maxwell system. In particular one finds gravi-electric and gravi-magnetic charges contributing to a spherically symmetric static Reissner-Nordstr\"om metric. Such Weyl ``charges'' provide a source for the non-Riemannian torsion and metric gradient fields instead of the electromagnetic field. The theory suggests that matter may be endowed with gravitational charges that couple to gravity in a manner analogous to electromagnetic couplings in an electromagnetic field. The nature of gravitational coupling to spinor matter in this theory is also investigated and a solution exhibiting a plane-symmetric gravitational metric wave coupled via non-Riemannian waves to a propagating spinor field is presented.Comment: 18 pages Plain Tex (No Figures), Classical and Quantum Gravit

    Mergers of close primordial binaries

    Full text link
    We study the production of main sequence mergers of tidally-synchronized primordial short-period binaries. The principal ingredients of our calculation are the angular momentum loss rates inferred from the spindown of open cluster stars and the distribution of binary properties in young open clusters. We compare our results with the expected number of systems that experience mass transfer in post-main sequence phases of evolution and compute the uncertainties in the theoretical predictions. We estimate that main-sequence mergers can account for the observed number of single blue stragglers in M67. Applied to the blue straggler population, this implies that such mergers are responsible for about one quarter of the population of halo blue metal poor stars, and at least one third of the blue stragglers in open clusters for systems older than 1 Gyr. The observed trends as a function of age are consistent with a saturated angular momentum loss rate for rapidly rotating tidally synchronized systems. The predicted number of blue stragglers from main sequence mergers alone is comparable to the number observed in globular clusters, indicating that the net effect of dynamical interactions in dense stellar environments is to reduce rather than increase the blue straggler population. A population of subturnoff mergers of order 3-4% of the upper main sequence population is also predicted for stars older than 4 Gyr, which is roughly comparable to the small population of highly Li-depleted halo dwarfs. Other observational tests are discussed.Comment: number of pages depends on font, margins, columns etc (58 with given format), 14 figures, submitted to the Astrophysical Journa

    New measurement of the scattering cross section of slow neutrons on liquid parahydrogen from neutron transmission

    Get PDF
    Liquid hydrogen is a dense Bose fluid whose equilibrium properties are both calculable from first principles using various theoretical approaches and of interest for the understanding of a wide range of questions in many body physics. Unfortunately, the pair correlation function g(r)g(r) inferred from neutron scattering measurements of the differential cross section dσdΩd\sigma \over d\Omega from different measurements reported in the literature are inconsistent. We have measured the energy dependence of the total cross section and the scattering cross section for slow neutrons with energies between 0.43~meV and 16.1~meV on liquid hydrogen at 15.6~K (which is dominated by the parahydrogen component) using neutron transmission measurements on the hydrogen target of the NPDGamma collaboration at the Spallation Neutron Source at Oak Ridge National Laboratory. The relationship between the neutron transmission measurement we perform and the total cross section is unambiguous, and the energy range accesses length scales where the pair correlation function is rapidly varying. At 1~meV our measurement is a factor of 3 below the data from previous work. We present evidence that these previous measurements of the hydrogen cross section, which assumed that the equilibrium value for the ratio of orthohydrogen and parahydrogen has been reached in the target liquid, were in fact contaminated with an extra non-equilibrium component of orthohydrogen. Liquid parahydrogen is also a widely-used neutron moderator medium, and an accurate knowledge of its slow neutron cross section is essential for the design and optimization of intense slow neutron sources. We describe our measurements and compare them with previous work.Comment: Edited for submission to Physical Review

    Young Radio Pulsars in Galactic Globular Clusters

    Get PDF
    Currently three isolated radio pulsars and one binary radio pulsar with no evidence of any previous recycling are known in 97 surveyed Galactic globular clusters. As pointed out by Lyne et al., the presence of these pulsars cannot be explained by core-collapse supernovae, as is commonly assumed for their counterparts in the Galactic disk. We apply a Bayesian analysis to the results from surveys for radio pulsars in globular clusters and find the number of potentially observable non-recycled radio pulsars present in all clusters to be < 3600. Accounting for beaming and retention considerations, the implied birth rate for any formation scenario for all 97 clusters is < 0.25 pulsars per century assuming a Maxwellian distribution of velocities with a dispersion of 10 km s^{-1}. The implied birth rates for higher velocity dispersions are substantially higher than inferred for such pulsars in the Galactic disk. This suggests that the velocity dispersion of young pulsars in globular clusters is significantly lower than those of disk pulsars. These numbers may be substantial overestimates due to the fact that the currently known sample of young pulsars is observed only in metal-rich clusters. We propose that young pulsars may only be formed in globular clusters with metallicities with log[Fe/H] > -0.6. In this case, the potentially observable population of such young pulsars is 447^{+1420}_{-399} (the error bars give the 95% confidence interval) and their birth rate is 0.012^{+0.037}_{-0.010} pulsars per century. The mostly likely creation scenario to explain these pulsars is the electron capture supernova of a OMgNe white dwarf.Comment: 13 Pages, 6 Figures, 4 Tables, to appear in Ap

    First observations of SPEAR-induced artificial backscatter from CUTLASS and the EISCAT Svalbard radars

    Get PDF
    Results are presented from the first two active experimental campaigns undertaken by the new SPEAR (Space Plasma Exploration by Active Radar) high-power system that has recently become operational on Spitzbergen, in the Svalbard archipelago. SPEAR&apos;s high-power beam was used to excite artificial enhancements in the backscatter detected by the ESR (EISCAT Svalbard Radar) parallel to the geomagnetic field, as well as coherent backscatter detected by both of the CUTLASS (Co-operative UK Twin Located Auroral Sounding System) coherent radars, in directions orthogonal to the geomagnetic field. The ESR detected both enhanced ion-lines as well as enhanced plasma-lines, that were sustained for the whole period when SPEAR was transmitting ordinary mode radio waves, at frequencies below the maximum F-region plasma frequency. On a number of occasions, coherent backscatter was also observed in one or in both of the CUTLASS radars, in beams that intersected the heated volume. Although the levels of enhanced backscatter varied considerably in time, it appeared that ion-line, plasma-line and coherent backscatter were all excited simultaneously, in contrast to what has typically been reported at Troms&amp;#248;, during EISCAT heater operations. A description of the technical and operational aspects of the new SPEAR system is also included
    corecore