Currently three isolated radio pulsars and one binary radio pulsar with no
evidence of any previous recycling are known in 97 surveyed Galactic globular
clusters. As pointed out by Lyne et al., the presence of these pulsars cannot
be explained by core-collapse supernovae, as is commonly assumed for their
counterparts in the Galactic disk. We apply a Bayesian analysis to the results
from surveys for radio pulsars in globular clusters and find the number of
potentially observable non-recycled radio pulsars present in all clusters to be
< 3600. Accounting for beaming and retention considerations, the implied birth
rate for any formation scenario for all 97 clusters is < 0.25 pulsars per
century assuming a Maxwellian distribution of velocities with a dispersion of
10 km s^{-1}. The implied birth rates for higher velocity dispersions are
substantially higher than inferred for such pulsars in the Galactic disk. This
suggests that the velocity dispersion of young pulsars in globular clusters is
significantly lower than those of disk pulsars. These numbers may be
substantial overestimates due to the fact that the currently known sample of
young pulsars is observed only in metal-rich clusters. We propose that young
pulsars may only be formed in globular clusters with metallicities with
log[Fe/H] > -0.6. In this case, the potentially observable population of such
young pulsars is 447^{+1420}_{-399} (the error bars give the 95% confidence
interval) and their birth rate is 0.012^{+0.037}_{-0.010} pulsars per century.
The mostly likely creation scenario to explain these pulsars is the electron
capture supernova of a OMgNe white dwarf.Comment: 13 Pages, 6 Figures, 4 Tables, to appear in Ap