13 research outputs found

    First thorough identification of factors associated with Cd, Hg and Pb concentrations in mosses sampled in the European Surveys 1990, 1995, 2000 and 2005

    Get PDF
    The aim of this study was, for the first time ever, to thoroughly identify the factors influencing Cd, Hg and Pb concentrations in mosses sampled within the framework of the European Heavy Metals in Mosses Surveys 1990–2005. These investigations can be seen as a follow up of a previous study where only the moss data recorded in the survey 2005 was included in the analysis (Schröder et al. 2010). The analyses of this investigation give a complete overview on the statistical association of Cd, Hg and Pb concentrations in mosses and sampling site-specific and regional characteristics, encompassing data from 4661 (1990), 7301 (1995), 6764 (2000) and 5600 (2005) sampling sites across Europe. From the many metals monitored in the European moss surveys, Cd, Hg and Pb were used as examples, since only for these three metals deposition measurements are being recorded in the framework of the European Monitoring and Evaluation Programme (EMEP). As exemplary case studies revealed that other factors besides atmospheric deposition of metals influence the element concentrations in mosses, the moss datasets of the above mentioned surveys were analysed by means of bivariate statistics and decision tree analysis in order to identify factors influencing metal bioaccumulation. In the analyses we used the metadata recorded during the sampling as well as additional geodata on, e.g., depositions, emissions and land use. Bivariate Spearman correlation analyses showed the highest correlations between Cd and Pb concentrations in mosses and EMEP modelled total deposition data (0.62 ≤ rs ≤ 0.73). For Hg the correlations with all the tested factors were considerably lower (e.g. total deposition r s  ≤ 0.24). Decision tree analyses by means of Classification and Regression Trees (CART) identified the total deposition as the statistically most significant factor for the Cd and Pb concentrations in the mosses in all four monitoring campaigns. For Hg, the most significant factor in 1990 as identified by CART was the distance to the nearest Hg source recorded in the European Pollutant Emission Register, in 1995 and 2000 it was the analytical method, and in 2005 it was the sampled moss species. The strong correlations between the Cd and Pb concentrations in the mosses and the total deposition can be used to calculate deposition maps with a regression kriging approach on the basis of surface maps on the element concentrations in the mosse

    Volcanic sulphate and arctic dust plumes over the North Atlantic ocean

    Get PDF
    High time resolution aerosol mass spectrometry measurements were conducted during a field campaign at Mace Head Research Station, Ireland, in June 2007. Observations on one particular day of the campaign clearly indicated advection of aerosol from volcanoes and desert plains in Iceland which could be traced with NOAA Hysplit air mass back trajectories and satellite images. In conjunction with this event, elevated levels of sulphate and light absorbing particles were encountered at Mace Head. While sulphate concentration was continuously increasing, nitrate levels remained low indicating no significant contribution from anthropogenic pollutants. Sulphate concentration increased about 3.8 g/m3 in comparison with the background conditions. Corresponding sulphur flux from volcanic emissions was estimated to about 0.3 TgS/yr, suggesting that a large amount of sulphur released from Icelandic volcanoes may be distributed over distances larger than 1000 km. Overall, our results corroborate that transport of volcanogenic sulphate and dust particles can significantly change the chemical composition, size distribution, and optical properties of aerosol over the North Atlantic Ocean and should be considered accordingly by regional climate models

    International field intercomparison measurements of atmospheric mercury species at Mace Head, Ireland

    No full text
    Eleven laboratories from North America and Europe met at Mace Head, Ireland for the period 11-15 September 1995 for the first international field intercomparison of measurement techniques for atmospheric mercury species in ambient air and precipitation at a marine background location. Different manual methods for the sampling and analysis of total gaseous mercury (TGM) on gold and silver traps were compared with each other and with new automated analyzers. Additionally, particulate-phase mercury (Hg(part)) in ambient air, total mercury, reactive mercury and methylmercury in precipitation were analyzed by some of the participating laboratories. Whereas measured concentrations of TGM and of total mercury in precipitation show good agreement between the participating laboratories, results for airborne particulate-phase mercury show much higher differences. Two laboratories measured inorganic oxidized gaseous mercury species (IOGM), and obtained levels in the low picogram m(exp -3) range

    Country-specific correlations across Europe between modelled atmospheric cadmium and lead deposition and concentrations in mosses

    Get PDF
    Previous analyses at the European scale have shown that cadmium and lead concentrations in mosses are primarily determined by the total deposition of these metals. Further analyses in the current study show that Spearman rank correlations between the concentration in mosses and the deposition modelled by the European Monitoring and Evaluation Programme (EMEP) are country and metal-specific. Significant positive correlations were found for about two thirds or more of the participating countries in 1990, 1995, 2000 and 2005 (except for Cd in 1990). Correlations were often not significant and sometimes negative in countries where mosses were only sampled in a relatively small number of EMEP grids. Correlations frequently improved when only data for EMEP grids with at least three moss sampling sites per grid were included. It was concluded that spatial patterns and temporal trends agree reasonably well between lead and cadmium concentrations in mosses and modelled atmospheric deposition

    Mosses as biomonitors of atmospheric heavy metal deposition: spatial and temporal trends in Europe

    No full text
    In recent decades, mosses have been used successfully as biomonitors of atmospheric deposition of heavy metals. Since 1990, the European moss survey has been repeated at five-yearly intervals. Although spatial patterns were metal-specific, in 2005 the lowest concentrations of metals in mosses were generally found in Scandinavia, the Baltic States and northern parts of the UK; the highest concentrations were generally found in Belgium and south-eastern Europe. The recent decline in emission and subsequent deposition of heavy metals across Europe has resulted in a decrease in the heavy metal concentration in mosses for the majority of metals. Since 1990, the concentration in mosses has declined the most for arsenic, cadmium, iron, lead and vanadium (52–72%), followed by copper, nickel and zinc (20–30%), with no significant reduction being observed for mercury (12% since 1995) and chromium (2%). However, temporal trends were country-specific with sometimes increases being found. Since 1990, heavy metal concentrations in mosses have declined in Europe for most metal

    European wide analysis of factors influencing the spatial variation of metal and nitrogen concentrations in mosses

    No full text
    The ICP Vegetation is an international programme that reports on the effects of air pollutants on natural vegetation and crops [1]. It reports to the Working Group on Effects (WGE) of the UNECE Convention on Long-range Transboundary Air Pollution (LRTAP). In particular, the ICP Vegetation focuses on the following air pollution problems: quantifying the risks to vegetation posed by ozone pollution and the atmospheric deposition of heavy metals and nitrogen to vegetation. In addition, the ICP Vegetation is taking into consideration impacts of nitrogen on vegetation (including interactions with ozone), consequences for biodiversity and the interactions between air pollutants and climate change. At the 23rd Task Force Meeting we will report on the achievements of the ICP Vegetation in 2009, in particular regarding progress made with items to be reported to the WGE in 2010 [2]: • Ozone biomonitoring experiment with bean in 2009; • Ozone impacts in Mediterranean areas; • Ozone flux modelling methods and their application to different climatic regions; • Outcome of workshop on ‘Flux-based assessment of ozone effects for air pollution policy’; • Progress with European heavy metals and nitrogen in mosses survey 2010/11; • Relationship between heavy metal concentration in mosses and EMEP modelled deposition. In addition, we will discuss the contribution of ICP Vegetation to the common workplan items of the WGE for 2010 [2]. Apart from looking back to our achievements in 2009, throughout the Task Force Meeting we will be discussing our future plans, in particular the medium-term workplan of the ICP Vegetation (2011 – 2012)
    corecore