160 research outputs found

    Planar infall of CH3OH gas around Cepheus A HW2

    Get PDF
    Aims: In order to test the nature of an (accretion) disk in the vicinity of Cepheus A HW2, we measured the three-dimensional velocity field of the CH3OH maser spots, which are projected within 1000au of the HW2 object, with an accuracy of the order of 0.1km/s. Methods: We made use of the European VLBI Network (EVN) to image the 6.7GHz CH3OH maser emission towards Cepheus A HW2 with 4.5 milli-arcsecond resolution (3au). We observed at three epochs spaced by one year between 2013 and 2015. During the last epoch, on mid-march 2015, we benefited from the new deployed Sardinia Radio Telescope. Results: We show that the CH3OH velocity vectors lie on a preferential plane for the gas motion with only small deviations of 12+/-9 degrees away from the plane. This plane is oriented at a position angle of 134 degrees east of north, and inclined by 26 degrees with the line-of-sight, closely matching the orientation of the disk-like structure previously reported by Patel et al.(2005). Knowing the orientation of the equatorial plane, we can reconstruct a face-on view of the CH3OH gas kinematics onto the plane. CH3OH maser emission is detected within a radius of 900au from HW2, and down to a radius of about 300au, the latter coincident with the extent of the dust emission at 0.9mm. The velocity field is dominated by an infall component of about 2km/s down to a radius of 300au, where a rotational component of 4km/s becomes dominant. We discuss the nature of this velocity field and the implications for the enclosed mass. Conclusions: These findings bring direct support to the interpretation that the high-density gas and dust emission, surrounding Cepheus A HW2, trace an accretion disk.Comment: 9 pages, 4 figures, 2 tables, accepted by Astronomy & Astrophysic

    Distribution and excitation of thermal methanol in 6.7 GHz maser bearing star-forming regions. I. The nearby source Cepheus A

    Get PDF
    Context. Candidate high-mass star-forming regions can be identified through the occurrence of 6.7 GHz methanol masers. In these sources the methanol abundance of the gas must be enhanced, because the masers require a considerable methanol path length. The place and time of origin of this enhancement is not well known. Similarly, it is debated in which of the physical components of the high-mass star-forming region the masers are located.Aims. The aim of this study is to investigate the distribution and excitation of the methanol gas around Cep A and to describe the physical conditions of the region. In addition the large-scale abundance distribution is determined to understand the morphology and kinematics of star-forming regions in which methanol masers occur.Methods. The spatial distribution of methanol is studied by mapping the line emission, as well as the column density and excitation temperature, which are estimated using rotation diagrams. For a limited number of positions the parameters are checked with non-LTE models. Furthermore, the distribution of the methanol abundance is derived in comparison with archival dust continuum maps.Results. Methanol is detected over a 0.3x0.15 pc area centred on the Cep A HW2 source and shows an outflow signature. Most of the gas can be characterized by a moderately warm rotation temperature (30-60 K). At the central position two velocity components are detected with different excitation characteristics, the first related to the large-scale outflow. The second component, uniquely detected at the central location, is probably associated with the maser emission on much smaller scales of 2 ''. A detailed analysis reveals that the highest densities and temperatures occur for these inner components. In the inner region the dust and gas are shown to have different physical parameters.Conclusions. Abundances of methanol in the range 10(-9)-10(-7) are inferred, with the abundance peaking at the maser position. The geometry of the large-scale methanol is in accordance with previous determinations of the Cep A geometry, in particular those from methanol masers. The dynamical and chemical time-scales are consistent with a scenario where the methanol originates in a single driving source associated with the HW2 object and the masers in its equatorial region.</p

    VALES: IV. Exploring the transition of star formation efficiencies between normal and starburst galaxies using APEX/SEPIA Band-5 and ALMA at low redshift

    Full text link
    In this work we present new APEX/SEPIA Band-5 observations targeting the CO (J=2-1J=2\text{-}1) emission line of 24 Herschel-detected galaxies at z=0.10.2z=0.1-0.2. Combining this sample {with} our recent new Valpara\'iso ALMA Line Emission Survey (VALES), we investigate the star formation efficiencies (SFEs = SFR/MH2M_{\rm H_{2}}) of galaxies at low redshift. We find the SFE of our sample bridges the gap between normal star-forming galaxies and Ultra-Luminous Infrared Galaxies (ULIRGs), which are thought to be triggered by different star formation modes. Considering the SFE\rm SFE' as the SFR and the LCOL'_{\rm CO} ratio, our data show a continuous and smooth increment as a function of infrared luminosity (or star formation rate) with a scatter about 0.5 dex, instead of a steep jump with a bimodal behaviour. This result is due to the use of a sample with a much larger range of sSFR/sSFRms_{\rm ms} using LIRGs, with luminosities covering the range between normal and ULIRGs. We conclude that the main parameters controlling the scatter of the SFE in star-forming galaxies are the systematic uncertainty of the αCO\alpha_{\rm CO} conversion factor, the gas fraction and physical size.Comment: 9pages, 7 figures, 1 table, accepted for publication in MNRA

    Magnetic field regulated infall on the disc around the massive protostar Cepheus A HW2

    Full text link
    We present polarization observations of the 6.7-GHz methanol masers around the massive protostar Cepheus A HW2 and its associated disc. The data were taken with the Multi-Element Radio Linked Interferometer Network. The maser polarization is used to determine the full three-dimensional magnetic field structure around Cepheus A HW2. The observations suggest that the masers probe the large scale magnetic field and not isolated pockets of a compressed field. We find that the magnetic field is predominantly aligned along the protostellar outflow and perpendicular to the molecular and dust disc. From the three-dimensional magnetic field orientation and measurements of the magnetic field strength along the line of sight, we are able to determine that the high density material, in which the masers occurs, is threaded by a large scale magnetic field of ~23 mG. This indicates that the protostellar environment at ~1000 AU from Cepheus A HW2 is slightly supercritical (lambda approximately 1.7) and the relation between density and magnetic field is consistent with collapse along the magnetic field lines. Thus, the observations indicate that the magnetic field likely regulates accretion onto the disc. The magnetic field dominates the turbulent energies by approximately a factor of three and is sufficiently strong to be the crucial component stabilizing the massive accretion disc and sustaining the high accretion rates needed during massive star-formation.Comment: 10 pages, 6 figures; accepted for publication in MNRAS. High resolution version can be found at http://www.astro.uni-bonn.de/~wouter/papers/papers.shtm

    Dynamics of the 6.7 and 12.2 GHz methanol masers around Cepheus A HW2

    Full text link
    The 6.7 GHz methanol maser is exclusively associated with high-mass star formation. However, it remains unclear what structures harbour the methanol masers. Cepheus A is one of the closest regions of massive star formation, making it an excellent candidate for detailed studies. We determine the dynamics of maser spots in the high-mass star-forming region Cepheus A in order to infer where and when the maser emission occurs. Very long baseline interferometry (VLBI) observations of the 6.7 and 12.2 GHz methanol masers allows for mapping their spatial and velocity distribution. Phase-referencing is used to determine the astrometric positions of the maser emission, and multi-epoch observations can reveal 3D motions. The 6.7 GHz methanol masers are found in a filamentary structure over ~1350 AU, straddling the waist of the radio jet HW2. The positions agree well with previous observations of both the 6.7 and 12.2 GHz methanol masers. The velocity field of the maser spots does not show any sign of rotation, but is instead consistent with an infall signature. The 12.2 GHz methanol masers are closely associated with the 6.7 GHz methanol masers, and the parallax that we derive confirms previous measurements. We show that the methanol maser emission very likely arises in a shock interface in the equatorial region of Cepheus A HW2 and presents a model in which the maser emission occurs between the infalling gas and the accretion disk/process.Comment: 9 pages, 5 figures; accepted for publication in Astronomy and Astrophysic

    Orion-KL Observations with the Extended Tuning Range of the New SEPIA660 APEX Facility Instrument

    Get PDF
    During Science Verification of the new SEPIA660 facility receiver at APEX, we carried out a shallow line survey of the archetypal Kleinmann- Low Nebula in the Orion star forming region (Orion-KL). These observations cover the tuning range towards the band edges, which has recently been extended beyond ALMA Band 9 specifications. At these frequencies, atmospheric transmission is very low but still sufficient to detect bright lines in Orion-KL. We present the collected spectra and compare with surveys from the literature, demonstrating the capabilities of the instrument

    The SEDIGISM survey: First Data Release and overview of the Galactic structure

    Get PDF
    The SEDIGISM (Structure, Excitation and Dynamics of the Inner Galactic Interstellar Medium) survey used the APEX telescope to map 84 deg2^2 of the Galactic plane between ℓ = −60° and +31° in several molecular transitions, including 13^{13}CO (2 – 1) and C18^{18}O (2 – 1), thus probing the moderately dense (∼103^3 cm3^{-3}) component of the interstellar medium. With an angular resolution of 30 arcsec and a typical 1σ sensitivity of 0.8–1.0 K at 0.25 km s1^{-1} velocity resolution, it gives access to a wide range of structures, from individual star-forming clumps to giant molecular clouds and complexes. The coverage includes a good fraction of the first and fourth Galactic quadrants, allowing us to constrain the large-scale distribution of cold molecular gas in the inner Galaxy. In this paper, we provide an updated overview of the full survey and the data reduction procedures used. We also assess the quality of these data and describe the data products that are being made publicly available as part of this First Data Release (DR1). We present integrated maps and position–velocity maps of the molecular gas and use these to investigate the correlation between the molecular gas and the large-scale structural features of the Milky Way such as the spiral arms, Galactic bar and Galactic Centre. We find that approximately 60 per cent of the molecular gas is associated with the spiral arms and these appear as strong intensity peaks in the derived Galactocentric distribution. We also find strong peaks in intensity at specific longitudes that correspond to the Galactic Centre and well-known star-forming complexes, revealing that the 13^{13}CO emission is concentrated in a small number of complexes rather than evenly distributed along spiral arms

    Economies of Scale: A Survey of the Empirical Literature

    Full text link
    corecore