39 research outputs found

    Excitation and relaxation in atom-cluster collisions

    Get PDF
    Electronic and vibrational degrees of freedom in atom-cluster collisions are treated simultaneously and self-consistently by combining time-dependent density functional theory with classical molecular dynamics. The gradual change of the excitation mechanisms (electronic and vibrational) as well as the related relaxation phenomena (phase transitions and fragmentation) are studied in a common framework as a function of the impact energy (eV...MeV). Cluster "transparency" characterized by practically undisturbed atom-cluster penetration is predicted to be an important reaction mechanism within a particular window of impact energies.Comment: RevTeX (4 pages, 4 figures included with epsf

    Cluster Magnetic Fields from Galactic Outflows

    Full text link
    We performed cosmological, magneto-hydrodynamical simulations to follow the evolution of magnetic fields in galaxy clusters, exploring the possibility that the origin of the magnetic seed fields are galactic outflows during the star-burst phase of galactic evolution. To do this we coupled a semi-analytical model for magnetized galactic winds as suggested by \citet{2006MNRAS.370..319B} to our cosmological simulation. We find that the strength and structure of magnetic fields observed in galaxy clusters are well reproduced for a wide range of model parameters for the magnetized, galactic winds and do only weakly depend on the exact magnetic structure within the assumed galactic outflows. Although the evolution of a primordial magnetic seed field shows no significant differences to that of galaxy clusters fields from previous studies, we find that the magnetic field pollution in the diffuse medium within filaments is below the level predicted by scenarios with pure primordial magnetic seed field. We therefore conclude that magnetized galactic outflows and their subsequent evolution within the intra-cluster medium can fully account for the observed magnetic fields in galaxy clusters. Our findings also suggest that measuring cosmological magnetic fields in low-density environments such as filaments is much more useful than observing cluster magnetic fields to infer their possible origin.Comment: Minor revision for publication in MNRA

    Radio Halos From Simulations And Hadronic Models II: The Scaling Relations of Radio Halos

    Full text link
    We use results from a constrained, cosmological MHD simulation of the Local Universe to predict radio halos and their evolution for a volume limited set of galaxy clusters and compare to current observations. The simulated magnetic field inside the clusters is a result of turbulent amplification within them, with the magnetic seed originating from star-burst driven, galactic outflows. We evaluate three models, where we choose different normalizations for the Cosmic Ray proton population within clusters. Similar to our previous analysis of the Coma cluster (Donnert et al. 2010), the radial profile and the morphological properties of observed radio halos can not be reproduced, even with a radially increasing energy fraction within the cosmic ray proton population. Scaling relations between X-ray luminosity and radio power can be reproduced by all models, however all models fail in the prediction of clusters with no radio emission. Also the evolutionary tracks of our largest clusters in all models fail to reproduce the observed bi-modality in radio luminosity. This provides additional evidence that the framework of hadronic, secondary models is disfavored to reproduce the large scale diffuse radio emission of galaxy clusters. We also provide predictions for the unavoidable emission of Îł\gamma-rays from the hadronic models for the full cluster set. None of such secondary models is yet excluded by the observed limits in Îł\gamma-ray emission, emphasizing that large scale diffuse radio emission is a powerful tool to constrain the amount of cosmic ray protons in galaxy clusters

    Minute-scale period oscillations of the magnetosphere

    No full text
    Oscillations with periods on the order of 5–10 min have been observed by instrumented spacecrafts in the Earth's magnetosphere. These oscillations often follow sudden impacts related to coronal mass ejections. It is demonstrated that a simple model is capable of explaining these oscillations and give a scaling law for their basic characteristics in terms of the basic parameters of the problem. The period of the oscillations and their anharmonic nature, in particular, are accounted for. The model has no free adjustable numerical parameters. The results agree well with observations. The analysis is supported by numerical simulations solving the Magneto-Hydro-Dynamic (MHD) equations in two spatial dimensions, where we let a solar wind interact with a magnetic dipole representing a magnetized Earth. We consider two tilt-angles of the magnetic dipole axis. We find the formation of a magnetosheath with the magnetopause at a distance corresponding well to the analytical results. Sudden pulses in the model solar wind sets the model magnetosphere into damped oscillatory motions and quantitatively good agreement with the analytical results is achieved

    Structure of Self-Assembled Free Methanol/Tetrachloromethane Clusters

    No full text
    The structure of molecular clusters of diameters at or below a nanometer is important both in nucleation phenomena and potentially for the preparation and application of nanoparticles. Little is known about the relationship between the structure and composition of the cluster and about the interplay between cluster composition, size, and temperature. The present project explores how the structure of mixed CH<sub>3</sub>OH/CCl<sub>4</sub> clusters vary with composition and size; implicitly by changing the amount of noncondensing backing gas and thus the capacity to remove heat during cluster condensation, and explicitly through theoretical models. Experimentally, molecular clusters were produced by coexpansion of helium and a vapor of azeotropic methanol/tetrachloromethane composition in a supersonic nozzle flow. The clusters were subsequently characterized by means of carbon 1s photoelectron spectroscopy. Additional information was obtained by molecular-dynamics simulations of clusters at 3 different sizes, 4 different compositions and several temperatures, and using polarizable force fields. Mixed clusters were indeed obtained in the coexpansion experiments. The clusters show an increasing degree of surface coverage by methanol as the backing pressure is lowered, and at the lowest helium pressure the cluster signal from tetrachloromethane has almost vanished. The MD simulations show a gradual change in cluster structure with increasing methanol contents, from that of isolated rings of methanol at the surface of a tetrachloromethane core, to a contiguous methanol cap covering more than half of the cluster surface, to that of subclusters of tetrachloromethane submerged in a methanol environment. Both experimental and computational results support a thermodynamical driving force for methanol to dominate the surface structure of the mixed clusters. At high helium pressure, the growing clusters may cool efficiently, possibly impeding the diffusion of methanol to the surface. At low helium pressure, methanol is completely dominating the outermost few layers of the clusters, possibly in parts caused by preferential loss of tetrachloromethane through evaporative cooling

    Vibrationally resolved photoelectron spectra of the carbon 1s and nitrogen 1s shells in hydrogen cyanide

    No full text
    Vibrational structures of the C1s and N1s photoelectron spectra of gas-phase HCN have been investigated using monochromated third-generation synchrotron radiation. Both spectra exhibit resolved fine structure associated with several vibrationally excited states. In the C1s spectrum a single vibrational progression is observed, while the N1s spectrum is more complex. High-level ab initio calculations were performed to simulate the spectra and the agreement with the experimental results is good. Based on the calculations, the C1s ionisation is found to induce vibrations solely in the C≡N stretching mode with an energy of 280 meV, while the N1s ionisation generates vibrations also in the C-H stretching mode with an energy of about 387 meV, as well as combinations of these two modes

    Ion phase space vortices in

    No full text
    The formation and propagation of isolated ion phase space vortices are observed in a 3-dimensional numerical simulation. The code allows for an externally applied constant magnetic field. The electrons are assumed to be isothermal and Boltzmann distributed at all times, implying that Poisson's equation becomes nonlinear for the present problem. Ion phase space vortices are formed by the nonlinear saturation of the ion-ion two-stream instability, excited by injecting an ion beam or short ion-bursts at the boundary. We consider the effects of finite beam diameters and the intensity of an externally imposed magnetic field
    corecore