32 research outputs found

    Effects of season and reproductive state on lipid intake and fatty acid composition of gastrointestinal tract contents in the European hare

    Get PDF
    We investigated lipid content and fatty acid (FA) composition of gastrointestinal tract contents in free-living, herbivorous European hares (Lepus europaeus). Mean crude fat content in hare stomachs and total gastrointestinal (GI) tracts was higher than expected for typical herbivore forages and peaked in late fall when hares massively deposited body fat reserves. Changes of FA proportions in different parts of the GI-tract indicated a highly preferential absorption of polyunsaturated fatty acids (PUFA). A further reduction of PUFA content in the caecum, along with the appearance of odd-chained FAs in caecum, caecotrophes, and colon content, pointed to a biohydrogenation of PUFA in the hare's hindgut. GI-tract contents showed significant seasonal changes in their FA composition. Among PUFA, α-linolenic acid peaked in spring while linoleic acid was predominant in late summer and fall, which probably reflected changes in the plant composition of forage. However, independent of seasonal changes, GI-tracts of lactating females showed a significantly (+33%) higher content of linoleic acid, a FA that is known to increase reproductive performance in European hares. This finding suggests that lactating females actively selected dietary plants rich in linoleic acid, a PUFA that may represent a limited resource for European hare

    Effects of season and reproductive state on lipid intake and fatty acid composition of gastrointestinal tract contents in the European hare

    Get PDF
    We investigated lipid content and fatty acid (FA) composition of gastrointestinal tract contents in free-living, herbivorous European hares (Lepus europaeus). Mean crude fat content in hare stomachs and total gastrointestinal (GI) tracts was higher than expected for typical herbivore forages and peaked in late fall when hares massively deposited body fat reserves. Changes of FA proportions in different parts of the GI-tract indicated a highly preferential absorption of polyunsaturated fatty acids (PUFA). A further reduction of PUFA content in the caecum, along with the appearance of odd-chained FAs in caecum, caecotrophes, and colon content, pointed to a biohydrogenation of PUFA in the hare’s hindgut. GI-tract contents showed significant seasonal changes in their FA composition. Among PUFA, α-linolenic acid peaked in spring while linoleic acid was predominant in late summer and fall, which probably reflected changes in the plant composition of forage. However, independent of seasonal changes, GI-tracts of lactating females showed a significantly (+33%) higher content of linoleic acid, a FA that is known to increase reproductive performance in European hares. This finding suggests that lactating females actively selected dietary plants rich in linoleic acid, a PUFA that may represent a limited resource for European hares

    Collective remembering and future forecasting during the COVID-19 pandemic: How the impact of COVID-19 affected the themes and phenomenology of global and national memories across 15 countries

    Get PDF
    The COVID-19 pandemic created a unique set of circumstances in which to investigate collective memory and future simulations of events reported during the onset of a potentially historic event. Between early April and late June 2020, we asked over 4,000 individuals from 15 countries across four continents to report on remarkable (a) national and (b) global events that (i) had happened since the first cases of COVID-19 were reported, and (ii) they expected to happen in the future. Whereas themes of infections, lockdown, and politics dominated global and national past events in most countries, themes of economy, a second wave, and lockdown dominated future events. The themes and phenomenological characteristics of the events differed based on contextual group factors. First, across all conditions, the event themes differed to a small yet significant degree depending on the severity of the pandemic and stringency of governmental response at the national level. Second, participants reported national events as less negative and more vivid than global events, and group differences in emotional valence were largest for future events. This research demonstrates that even during the early stages of the pandemic, themes relating to its onset and course were shared across many countries, thus providing preliminary evidence for the emergence of collective memories of this event as it was occurring. Current findings provide a profile of past and future collective events from the early stages of the ongoing pandemic, and factors accounting for the consistencies and differences in event representations across 15 countries are discussed

    Expert range maps of global mammal distributions harmonised to three taxonomic authorities

    Get PDF
    Aim: Comprehensive, global information on species' occurrences is an essential biodiversity variable and central to a range of applications in ecology, evolution, biogeography and conservation. Expert range maps often represent a species' only available distributional information and play an increasing role in conservation assessments and macroecology. We provide global range maps for the native ranges of all extant mammal species harmonised to the taxonomy of the Mammal Diversity Database (MDD) mobilised from two sources, the Handbook of the Mammals of the World (HMW) and the Illustrated Checklist of the Mammals of the World (CMW). Location: Global. Taxon: All extant mammal species. Methods: Range maps were digitally interpreted, georeferenced, error-checked and subsequently taxonomically aligned between the HMW (6253 species), the CMW (6431 species) and the MDD taxonomies (6362 species). Results: Range maps can be evaluated and visualised in an online map browser at Map of Life (mol.org) and accessed for individual or batch download for non-commercial use. Main conclusion: Expert maps of species' global distributions are limited in their spatial detail and temporal specificity, but form a useful basis for broad-scale characterizations and model-based integration with other data. We provide georeferenced range maps for the native ranges of all extant mammal species as shapefiles, with species-level metadata and source information packaged together in geodatabase format. Across the three taxonomic sources our maps entail, there are 1784 taxonomic name differences compared to the maps currently available on the IUCN Red List website. The expert maps provided here are harmonised to the MDD taxonomic authority and linked to a community of online tools that will enable transparent future updates and version control.Fil: Marsh, Charles J.. Yale University; Estados UnidosFil: Sica, Yanina. Yale University; Estados UnidosFil: Burguin, Connor. University of New Mexico; Estados UnidosFil: Dorman, Wendy A.. University of Yale; Estados UnidosFil: Anderson, Robert C.. University of Yale; Estados UnidosFil: del Toro Mijares, Isabel. University of Yale; Estados UnidosFil: Vigneron, Jessica G.. University of Yale; Estados UnidosFil: Barve, Vijay. University Of Florida. Florida Museum Of History; Estados UnidosFil: Dombrowik, Victoria L.. University of Yale; Estados UnidosFil: Duong, Michelle. University of Yale; Estados UnidosFil: Guralnick, Robert. University Of Florida. Florida Museum Of History; Estados UnidosFil: Hart, Julie A.. University of Yale; Estados UnidosFil: Maypole, J. Krish. University of Yale; Estados UnidosFil: McCall, Kira. University of Yale; Estados UnidosFil: Ranipeta, Ajay. University of Yale; Estados UnidosFil: Schuerkmann, Anna. University of Yale; Estados UnidosFil: Torselli, Michael A.. University of Yale; Estados UnidosFil: Lacher, Thomas. Texas A&M University; Estados UnidosFil: Wilson, Don E.. National Museum of Natural History; Estados UnidosFil: Abba, Agustin Manuel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Centro de Estudios ParasitolĂłgicos y de Vectores. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Estudios ParasitolĂłgicos y de Vectores; ArgentinaFil: Aguirre, Luis F.. Universidad Mayor de San SimĂłn; BoliviaFil: Arroyo Cabrales, JoaquĂ­n. Instituto Nacional de AntropologĂ­a E Historia, Mexico; MĂ©xicoFil: AstĂșa, Diego. Universidade Federal de Pernambuco; BrasilFil: Baker, Andrew M.. Queensland University of Technology; Australia. Queensland Museum; AustraliaFil: Braulik, Gill. University of St. Andrews; Reino UnidoFil: Braun, Janet K.. Oklahoma State University; Estados UnidosFil: Brito, Jorge. Instituto Nacional de Biodiversidad; EcuadorFil: Busher, Peter E.. Boston University; Estados UnidosFil: Burneo, Santiago F.. Pontificia Universidad CatĂłlica del Ecuador; EcuadorFil: Camacho, M. Alejandra. Pontificia Universidad CatĂłlica del Ecuador; EcuadorFil: de Almeida Chiquito, Elisandra. Universidade Federal do EspĂ­rito Santo; BrasilFil: Cook, Joseph A.. University of New Mexico; Estados UnidosFil: CuĂ©llar Soto, Erika. Sultan Qaboos University; OmĂĄnFil: Davenport, Tim R. B.. Wildlife Conservation Society; TanzaniaFil: Denys, Christiane. MusĂ©um National d'Histoire Naturelle; FranciaFil: Dickman, Christopher R.. The University Of Sydney; AustraliaFil: Eldridge, Mark D. B.. Australian Museum; AustraliaFil: Fernandez Duque, Eduardo. University of Yale; Estados UnidosFil: Francis, Charles M.. Environment And Climate Change Canada; CanadĂĄFil: Frankham, Greta. Australian Museum; AustraliaFil: Freitas, Thales. Universidade Federal do Rio Grande do Sul; BrasilFil: Friend, J. Anthony. Conservation And Attractions; AustraliaFil: Giannini, Norberto Pedro. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico - TucumĂĄn. Unidad Ejecutora Lillo; ArgentinaFil: Gursky-Doyen, Sharon. Texas A&M University; Estados UnidosFil: HacklĂ€nder, Klaus. Universitat Fur Bodenkultur Wien; AustriaFil: Hawkins, Melissa. National Museum of Natural History; Estados UnidosFil: Helgen, Kristofer M.. Australian Museum; AustraliaFil: Heritage, Steven. University of Duke; Estados UnidosFil: Hinckley, Arlo. Consejo Superior de Investigaciones CientĂ­ficas. EstaciĂłn BiolĂłgica de Doñana; EspañaFil: Holden, Mary. American Museum of Natural History; Estados UnidosFil: Holekamp, Kay E.. Michigan State University; Estados UnidosFil: Humle, Tatyana. University Of Kent; Reino UnidoFil: Ibåñez Ulargui, Carlos. Consejo Superior de Investigaciones CientĂ­ficas. EstaciĂłn BiolĂłgica de Doñana; EspañaFil: Jackson, Stephen M.. Australian Museum; AustraliaFil: Janecka, Mary. University of Pittsburgh at Johnstown; Estados Unidos. University of Pittsburgh; Estados UnidosFil: Jenkins, Paula. Natural History Museum; Reino UnidoFil: Juste, Javier. Consejo Superior de Investigaciones CientĂ­ficas. EstaciĂłn BiolĂłgica de Doñana; EspañaFil: Leite, Yuri L. R.. Universidade Federal do EspĂ­rito Santo; BrasilFil: Novaes, Roberto Leonan M.. Universidade Federal do Rio de Janeiro; BrasilFil: Lim, Burton K.. Royal Ontario Museum; CanadĂĄFil: Maisels, Fiona G.. Wildlife Conservation Society; Estados UnidosFil: Mares, Michael A.. Oklahoma State University; Estados UnidosFil: Marsh, Helene. James Cook University; AustraliaFil: Mattioli, Stefano. UniversitĂ  degli Studi di Siena; ItaliaFil: Morton, F. Blake. University of Hull; Reino UnidoFil: Ojeda, Agustina Alejandra. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; ArgentinaFil: Ordóñez Garza, NictĂ©. Instituto Nacional de Biodiversidad; EcuadorFil: Pardiñas, Ulises Francisco J.. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Centro Nacional PatagĂłnico. Instituto de Diversidad y EvoluciĂłn Austral; ArgentinaFil: Pavan, Mariana. Universidade de Sao Paulo; BrasilFil: Riley, Erin P.. San Diego State University; Estados UnidosFil: Rubenstein, Daniel I.. University of Princeton; Estados UnidosFil: Ruelas, Dennisse. Museo de Historia Natural, Lima; PerĂșFil: Schai-Braun, StĂ©phanie. Universitat Fur Bodenkultur Wien; AustriaFil: Schank, Cody J.. University of Texas at Austin; Estados UnidosFil: Shenbrot, Georgy. Ben Gurion University of the Negev; IsraelFil: Solari, Sergio. Universidad de Antioquia; ColombiaFil: Superina, Mariella. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza. Instituto de Medicina y BiologĂ­a Experimental de Cuyo; ArgentinaFil: Tsang, Susan. American Museum of Natural History; Estados UnidosFil: Van Cakenberghe, Victor. Universiteit Antwerp; BĂ©lgicaFil: Veron, Geraldine. UniversitĂ© Pierre et Marie Curie; FranciaFil: Wallis, Janette. Kasokwa-kityedo Forest Project; UgandaFil: Whittaker, Danielle. Michigan State University; Estados UnidosFil: Wells, Rod. Flinders University.; AustraliaFil: Wittemyer, George. State University of Colorado - Fort Collins; Estados UnidosFil: Woinarski, John. Charles Darwin University; AustraliaFil: Upham, Nathan S.. University of Yale; Estados UnidosFil: Jetz, Walter. University of Yale; Estados Unido

    Expert range maps of global mammal distributions harmonised to three taxonomic authorities

    Get PDF
    AimComprehensive, global information on species' occurrences is an essential biodiversity variable and central to a range of applications in ecology, evolution, biogeography and conservation. Expert range maps often represent a species' only available distributional information and play an increasing role in conservation assessments and macroecology. We provide global range maps for the native ranges of all extant mammal species harmonised to the taxonomy of the Mammal Diversity Database (MDD) mobilised from two sources, the Handbook of the Mammals of the World (HMW) and the Illustrated Checklist of the Mammals of the World (CMW).LocationGlobal.TaxonAll extant mammal species.MethodsRange maps were digitally interpreted, georeferenced, error-checked and subsequently taxonomically aligned between the HMW (6253 species), the CMW (6431 species) and the MDD taxonomies (6362 species).ResultsRange maps can be evaluated and visualised in an online map browser at Map of Life (mol.org) and accessed for individual or batch download for non-commercial use.Main conclusionExpert maps of species' global distributions are limited in their spatial detail and temporal specificity, but form a useful basis for broad-scale characterizations and model-based integration with other data. We provide georeferenced range maps for the native ranges of all extant mammal species as shapefiles, with species-level metadata and source information packaged together in geodatabase format. Across the three taxonomic sources our maps entail, there are 1784 taxonomic name differences compared to the maps currently available on the IUCN Red List website. The expert maps provided here are harmonised to the MDD taxonomic authority and linked to a community of online tools that will enable transparent future updates and version control

    Data from: Infanticide as a male reproductive strategy has a nutritive risk effect in brown bears

    No full text
    Behavioral strategies to reduce predation can incur costs (i.e. risk effects). A common strategy to avoid predation is spatiotemporal avoidance of predators, in which prey typically trade optimal resources for safety. Analogous with predator-prey theory, risk effects should also arise in species with sexually selected infanticide (SSI), in which females with dependent offspring avoid infanticidal males. In brown bears (Ursus arctos), SSI is common and explains spatiotemporal segregation among reproductive classes. Here, we show that females with cubs-of-the-year had lower quality diets than conspecifics during the SSI high-risk period, the mating season. After the mating season, their diets were of similar quality to diets of their conspecifics. Our results suggest a nutritive risk effect of SSI, in which females with cubs-of-the-year alter their resource selection and trade optimal resources for offspring safety. We suggest that risk effects can be widespread among species with SSI, and that these risk effects can add to the female costs of reproduction

    Infanticide as a male reproductive strategy has a nutritive risk effect in brown bears

    No full text
    Behavioral strategies to reduce predation can incur costs (i.e. risk effects). A common strategy to avoid predation is spatiotemporal avoidance of predators, in which prey typically trade optimal resources for safety. Analogous with predator-prey theory, risk effects should also arise in species with sexually selected infanticide (SSI), in which females with dependent offspring avoid infanticidal males. In brown bears (Ursus arctos), SSI is common and explains spatiotemporal segregation among reproductive classes. Here, we show that females with cubs-of-the-year had lower quality diets than conspecifics during the SSI high-risk period, the mating season. After the mating season, their diets were of similar quality to diets of their conspecifics. Our results suggest a nutritive risk effect of SSI, in which females with cubs-of-the-year alter their resource selection and trade optimal resources for offspring safety. We suggest that risk effects can be widespread among species with SSI, and that these risk effects can add to the female costs of reproduction
    corecore