73 research outputs found

    Structural dynamics of retroviral genomes

    Get PDF
    Retroviral RNA genomes form myriad structures that are governed by critical interactions with either the nucleocapsid (NC) protein or the nucleocapsid domain of Gag polyprotein. I have pioneered two powerful technologies, based on SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension), to explore interactions between NC and the RNA genomes of the xenotropic murine leukemia virus related virus (XMRV) and the Moloney murine leukemia virus (MuLV). In the first approach, ultra-sensitive SHAPE, I developed a two-color capillary electrophoresis instrument with low attomole (10-18) sensitivity. New analysis approaches and the high sensitivity of this instrument allowed me to obtain unprecedented single-nucleotide resolution structures from authentic RNA genomes of MuLV and XMRV. In the second approach, time-resolved SHAPE, I used a fast acting SHAPE reagent to reveal the structural biogenesis of NC binding to the MuLV retroviral RNA genome. The data generated using these SHAPE-based technologies allow me to propose detailed mechanisms for both the specific RNA binding and the chaperone activities of NC

    An Immature Retroviral RNA Genome Resembles a Kinetically Trapped Intermediate State

    Get PDF
    Retroviral virions initially assemble in an immature form that differs from that of the mature infectious particle. The RNA genomes in both immature and infectious particles are dimers, and interactions between the RNA dimer and the viral Gag protein ensure selective packaging into nascent immature virions. We used high-sensitivity selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE) to obtain nucleotide-resolution structural information from scarce, femtomole quantities of Moloney murine leukemia virus (MuLV) RNA inside authentic virions and from viral RNA extracted from immature (protease-minus) virions. Our secondary structure model of the dimerization and packaging domain indicated that a stable intermolecular duplex known as PAL2, previously shown to be present in mature infectious MuLV particles, was sequestered in an alternate stem-loop structure inside immature virions. The intermediate state corresponded closely to a late-folding intermediate that we detected in time-resolved studies of the free MuLV RNA, suggesting that the immature RNA structure reflects trapping of the intermediate folding state by interactions in the immature virion. We propose models for the RNA-protein interactions that trap the RNA in the immature state and for the conformational rearrangement that occurs during maturation of virion particles

    Femtomole SHAPE Reveals Regulatory Structures in the Authentic XMRV RNA Genome

    Get PDF
    Higher-order structure influences critical functions in nearly all non-coding and coding RNAs. Most single-nucleotide resolution RNA structure determination technologies cannot be used to analyze RNA from scarce biological samples, like viral genomes. To make quantitative RNA structure analysis applicable to a much wider array of RNA structure-function problems, we developed and applied high-sensitivity selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) to structural analysis of authentic genomic RNA of the xenotropic murine leukemia virus-related virus (XMRV). For analysis of fluorescently labeled cDNAs generated in high-sensitivity SHAPE experiments, we developed a two-color capillary electrophoresis approach with zeptomole molecular detection limits and sub-femtomole sensitivity for complete SHAPE experiments involving hundreds of individual RNA structure measurements. High-sensitivity SHAPE data correlated closely (R = 0.89) with data obtained by conventional capillary electrophoresis. Using high-sensitivity SHAPE, we determined the dimeric structure of the XMRV packaging domain, examined dynamic interactions between a packaging domain RNA and viral nucleocapsid protein inside virion particles, and identified the packaging signal for this virus. Despite extensive sequence differences between XMRV and the intensively studied Moloney murine leukemia virus, architectures of the regulatory domains are similar and reveal common principles of gammaretrovirus RNA genome packaging

    A Guanosine-Centric Mechanism for RNA Chaperone Function

    Get PDF
    RNA chaperones are ubiquitous, heterogeneous proteins essential for RNA structural biogenesis and function. We investigated the mechanism of chaperone-mediated RNA folding by following the time-resolved dimerization of the packaging domain of a retroviral RNA at nucleotide resolution. In the absence of the nucleocapsid (NC) chaperone, dimerization proceeded via multiple, slow-folding intermediates. In the presence of NC, dimerization occurred rapidly via a single structural intermediate. The RNA binding domain of hnRNP A1 protein (UP1), a structurally unrelated chaperone, also accelerated dimerization. Both chaperones interacted primarily with guanosine residues. Replacing guanosine with more weakly pairing inosine yielded an RNA that folded rapidly without a facilitating chaperone. These results show RNA chaperones can simplify RNA folding landscapes by weakening intramolecular interactions involving guanosine and explain many RNA chaperone activities

    Beyond chance? The persistence of performance in online poker

    Get PDF
    A major issue in the widespread controversy about the legality of poker and the appropriate taxation of winnings is whether poker should be considered a game of skill or a game of chance. To inform this debate we present an analysis into the role of skill in the performance of online poker players, using a large database with hundreds of millions of player-hand observations from real money ring games at three different stakes levels. We find that players whose earlier profitability was in the top (bottom) deciles perform better (worse) and are substantially more likely to end up in the top (bottom) performance deciles of the following time period. Regression analyses of performance on historical performance and other skill-related proxies provide further evidence for persistence and predictability. Simulations point out that skill dominates chance when performance is measured over 1,500 or more hands of play

    The putative RNase P motif in the DEAD box helicase Hera is dispensable for efficient interaction with RNA and helicase activity

    Get PDF
    DEAD box helicases use the energy of ATP hydrolysis to remodel RNA structures or RNA/protein complexes. They share a common helicase core with conserved signature motifs, and additional domains may confer substrate specificity. Identification of a specific substrate is crucial towards understanding the physiological role of a helicase. RNA binding and ATPase stimulation are necessary, but not sufficient criteria for a bona fide helicase substrate. Here, we report single molecule FRET experiments that identify fragments of the 23S rRNA comprising hairpin 92 and RNase P RNA as substrates for the Thermus thermophilus DEAD box helicase Hera. Both substrates induce a switch to the closed conformation of the helicase core and stimulate the intrinsic ATPase activity of Hera. Binding of these RNAs is mediated by the Hera C-terminal domain, but does not require a previously proposed putative RNase P motif within this domain. ATP-dependent unwinding of a short helix adjacent to hairpin 92 in the ribosomal RNA suggests a specific role for Hera in ribosome assembly, analogously to the Escherichia coli and Bacillus subtilis helicases DbpA and YxiN. In addition, the specificity of Hera for RNase P RNA may be required for RNase P RNA folding or RNase P assembly

    Cognitive Neuropsychology of HIV-Associated Neurocognitive Disorders

    Get PDF
    Advances in the treatment of the human immunodeficiency virus (HIV) have dramatically improved survival rates over the past 10 years, but HIV-associated neurocognitive disorders (HAND) remain highly prevalent and continue to represent a significant public health problem. This review provides an update on the nature, extent, and diagnosis of HAND. Particular emphasis is placed on critically evaluating research within the realm of cognitive neuropsychology that aims to elucidate the component processes of HAND across the domains of executive functions, motor skills, speeded information processing, episodic memory, attention/working memory, language, and visuoperception. In addition to clarifying the cognitive mechanisms of HAND (e.g., impaired cognitive control), the cognitive neuropsychology approach may enhance the ecological validity of neuroAIDS research and inform the development of much needed novel, targeted cognitive and behavioral therapies

    Human and murine APOBEC3s restrict replication of koala retrovirus by different mechanisms

    Get PDF
    Background: Koala retrovirus (KoRV) is an endogenous and exogenous retrovirus of koalas that may cause lymphoma. As for many other gammaretroviruses, the KoRV genome can potentially encode an alternate form of Gag protein, glyco-gag. Results: In this study, a convenient assay for assessing KoRV infectivity in vitro was employed: the use of DERSE cells (initially developed to search for infectious xenotropic murine leukemia-like viruses). Using infection of DERSE and other human cell lines (HEK293T), no evidence for expression of glyco-gag by KoRV was found, either in expression of glyco-gag protein or changes in infectivity when the putative glyco-gag reading frame was mutated. Since glyco-gag mediates resistance of Moloney murine leukemia virus to the restriction factor APOBEC3, the sensitivity of KoRV (wt or putatively mutant for glyco-gag) to restriction by murine (mA3) or human APOBEC3s was investigated. Both mA3 and hA3G potently inhibited KoRV infectivity. Interestingly, hA3G restriction was accompanied by extensive G → A hypermutation during reverse transcription while mA3 restriction was not. Glyco-gag status did not affect the results. Conclusions: These results indicate that the mechanisms of APOBEC3 restriction of KoRV by hA3G and mA3 differ (deamination dependent vs. independent) and glyco-gag does not play a role in the restriction

    An Immature Retroviral RNA Genome Resembles a Kinetically Trapped Intermediate State

    No full text
    Retroviral virions initially assemble in an immature form that differs from that of the mature infectious particle. The RNA genomes in both immature and infectious particles are dimers, and interactions between the RNA dimer and the viral Gag protein ensure selective packaging into nascent immature virions. We used high-sensitivity selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE) to obtain nucleotide-resolution structural information from scarce, femtomole quantities of Moloney murine leukemia virus (MuLV) RNA inside authentic virions and from viral RNA extracted from immature (protease-minus) virions. Our secondary structure model of the dimerization and packaging domain indicated that a stable intermolecular duplex known as PAL2, previously shown to be present in mature infectious MuLV particles, was sequestered in an alternate stem-loop structure inside immature virions. The intermediate state corresponded closely to a late-folding intermediate that we detected in time-resolved studies of the free MuLV RNA, suggesting that the immature RNA structure reflects trapping of the intermediate folding state by interactions in the immature virion. We propose models for the RNA-protein interactions that trap the RNA in the immature state and for the conformational rearrangement that occurs during maturation of virion particles. IMPORTANCE The structure of the RNA genome in mature retroviruses has been studied extensively, whereas very little was known about the RNA structure in immature virions. The immature RNA structure is important because it is the form initially selected for packaging in new virions and may have other roles. This lack of information was due to the difficulty of isolating sufficient viral RNA for study. In this work, we apply a high-sensitivity and nucleotide-resolution approach to examine the structure of the dimerization and packaging domain of Moloney murine leukemia virus. We find that the genomic RNA is packaged in a high-energy state, suggesting that interactions within the virion hold or capture the RNA before it reaches its most stable state. This new structural information makes it possible to propose models for the conformational changes in the RNA genome that accompany retroviral maturation
    corecore