138 research outputs found

    Modeling signal-to-noise ratio of otoacoustic emissions in workers exposed to different industrial noise levels

    Get PDF
    Introduction: Noise is considered as the most common cause of harmful physical effects in the workplace. A sound that is generated from within the inner ear is known as an otoacoustic emission (OAE). Distortion-product otoacoustic emissions (DPOAEs) assess evoked emission and hearing capacity. The aim of this study was to assess the signal-to-noise ratio in different frequencies and at different times of the shift work in workers exposed to various levels of noise. It was also aimed to provide a statistical model for signal-to-noise ratio (SNR) of OAEs in different frequencies based on the two variables of sound pressure level (SPL) and exposure time. Materials and Methods: This case-control study was conducted on 45 workers during autumn 2014. The workers were divided into three groups based on the level of noise exposure. The SNR was measured in frequencies of 1000, 2000, 3000, 4000, and 6000 Hz in both ears, and in three different time intervals during the shift work. According to the inclusion criterion, SNR of 6 dB or greater was included in the study. The analysis was performed using repeated measurements of analysis of variance, spearman correlation coefficient, and paired samples t-test. Results: The results showed that there was no statistically significant difference between the three exposed groups in terms of the mean values of SNR (P > 0.05). Only in signal pressure levels of 88 dBA with an interval time of 10:30-11:00 AM, there was a statistically significant difference between the right and left ears with the mean SNR values of 3000 frequency (P = 0.038). The SPL had a significant effect on the SNR in both the right and left ears (P = 0.023, P = 0.041). The effect of the duration of measurement on the SNR was statistically significant in both the right and left ears (P = 0.027, P < 0.001). Conclusion: The findings of this study demonstrated that after noise exposure during the shift, SNR of OAEs reduced from the beginning to the end of the shift

    Multi-period Project Portfolio Selection under Risk considerations and Stochastic Income

    Get PDF
    This paper deals with multi-period project portfolio selection problem. In this problem, the available budget is invested on the best portfolio of projects in each period such that the net profit is maximized. We also consider more realistic assumptions to cover wider range of applications than those reported in previous studies. A novel mathematical model is presented to solve the problem, considering risks, stochastic incomes, and possibility of investing extra budget in each time period. Due to the complexity of the problem, an effective meta-heuristic method hybridized with a local search procedure is presented to solve the problem. The algorithm is based on genetic algorithm (GA), which is a prominent method to solve this type of problems. The GA is enhanced by a new solution representation and well selected operators. It also is hybridized with a local search mechanism to gain better solution in shorter time. The performance of the proposed algorithm is then compared with well-known algorithms, like basic genetic algorithm (GA), particle swarm optimization (PSO), and electromagnetism-like algorithm (EM-like) by means of some prominent indicators. The computation results show the superiority of the proposed algorithm in terms of accuracy, robustness and computation time. At last, the proposed algorithm is wisely combined with PSO to improve the computing time considerably

    Genetic Variants of Cytochrome b-245, Alpha Polypeptide Gene and Premature Acute Myocardial Infarction Risk in An Iranian Population

    Get PDF
    Background: Oxidative stress induced by superoxide anion plays critical roles in the pathogenesis of coronary artery disease (CAD) and hence acute myocardial infarction (AMI). The major source of superoxide production in vascular smooth muscle and endothelial cells is the NADPH oxidase complex. An essential component of this complex is p22phox, that is encoded by the cytochrome b-245, alpha polypeptide (CYBA) gene. The aim of this study was to investigate the association of CYBA variants (rs1049255 and rs4673) and premature acute myocardial infarction risk in an Iranian population. Methods: The study population consisted of 158 patients under the age of 50 years, with a diagnosis of premature AMI, and 168 age-matched controls with normal coronary angiograms. Genotyping of the polymorphisms was performed by the polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP). Results: There was no association between the genotypes and allele frequencies of rs4673 polymorphism and premature acute myocardial infarction (P>0.05). A significant statistical association was observed between the genotypes distribution of rs1049255 polymorphism and AMI risk (P=0.037). Furthermore, the distribution of AA+AG/GG genotypes was found to be statistically significant between the two groups (P=0.011). Conclusions: Our findings indicated that rs1049255 but not rs4673 polymorphism is associated with premature AMI

    Accurate detection of spontaneous seizures using a generalized linear model with external validation

    Get PDF
    Objective Seizure detection is a major facet of electroencephalography (EEG) analysis in neurocritical care, epilepsy diagnosis and management, and the instantiation of novel therapies such as closed-loop stimulation or optogenetic control of seizures. It is also of increased importance in high-throughput, robust, and reproducible pre-clinical research. However, seizure detectors are not widely relied upon in either clinical or research settings due to limited validation. In this study, we create a high-performance seizure-detection approach, validated in multiple data sets, with the intention that such a system could be available to users for multiple purposes. Methods We introduce a generalized linear model trained on 141 EEG signal features for classification of seizures in continuous EEG for two data sets. In the first (Focal Epilepsy) data set consisting of 16 rats with focal epilepsy, we collected 1012 spontaneous seizures over 3 months of 24/7 recording. We trained a generalized linear model on the 141 features representing 20 feature classes, including univariate and multivariate, linear and nonlinear, time, and frequency domains. We tested performance on multiple hold-out test data sets. We then used the trained model in a second (Multifocal Epilepsy) data set consisting of 96 rats with 2883 spontaneous multifocal seizures. Results From the Focal Epilepsy data set, we built a pooled classifier with an Area Under the Receiver Operating Characteristic (AUROC) of 0.995 and leave-one-out classifiers with an AUROC of 0.962. We validated our method within the independently constructed Multifocal Epilepsy data set, resulting in a pooled AUROC of 0.963. We separately validated a model trained exclusively on the Focal Epilepsy data set and tested on the held-out Multifocal Epilepsy data set with an AUROC of 0.890. Latency to detection was under 5 seconds for over 80% of seizures and under 12 seconds for over 99% of seizures. Significance This method achieves the highest performance published for seizure detection on multiple independent data sets. This method of seizure detection can be applied to automated EEG analysis pipelines as well as closed loop interventional approaches, and can be especially useful in the setting of research using animals in which there is an increased need for standardization and high-throughput analysis of large number of seizures

    Asymmetric Genome Organization in an RNA Virus Revealed via Graph-Theoretical Analysis of Tomographic Data

    Get PDF
    Cryo-electron microscopy permits 3-D structures of viral pathogens to be determined in remarkable detail. In particular, the protein containers encapsulating viral genomes have been determined to high resolution using symmetry averaging techniques that exploit the icosahedral architecture seen in many viruses. By contrast, structure determination of asymmetric components remains a challenge, and novel analysis methods are required to reveal such features and characterize their functional roles during infection. Motivated by the important, cooperative roles of viral genomes in the assembly of single-stranded RNA viruses, we have developed a new analysis method that reveals the asymmetric structural organization of viral genomes in proximity to the capsid in such viruses. The method uses geometric constraints on genome organization, formulated based on knowledge of icosahedrally-averaged reconstructions and the roles of the RNA-capsid protein contacts, to analyse cryo-electron tomographic data. We apply this method to the low-resolution tomographic data of a model virus and infer the unique asymmetric organization of its genome in contact with the protein shell of the capsid. This opens unprecedented opportunities to analyse viral genomes, revealing conserved structural features and mechanisms that can be targeted in antiviral drug desig

    Mechanical and Assembly Units of Viral Capsids Identified via Quasi-Rigid Domain Decomposition

    Get PDF
    Key steps in a viral life-cycle, such as self-assembly of a protective protein container or in some cases also subsequent maturation events, are governed by the interplay of physico-chemical mechanisms involving various spatial and temporal scales. These salient aspects of a viral life cycle are hence well described and rationalised from a mesoscopic perspective. Accordingly, various experimental and computational efforts have been directed towards identifying the fundamental building blocks that are instrumental for the mechanical response, or constitute the assembly units, of a few specific viral shells. Motivated by these earlier studies we introduce and apply a general and efficient computational scheme for identifying the stable domains of a given viral capsid. The method is based on elastic network models and quasi-rigid domain decomposition. It is first applied to a heterogeneous set of well-characterized viruses (CCMV, MS2, STNV, STMV) for which the known mechanical or assembly domains are correctly identified. The validated method is next applied to other viral particles such as L-A, Pariacoto and polyoma viruses, whose fundamental functional domains are still unknown or debated and for which we formulate verifiable predictions. The numerical code implementing the domain decomposition strategy is made freely available

    Non-invasive ventilation (NIV) as an aid to rehabilitation in acute respiratory disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Non-invasive ventilation (NIV) can increase exercise tolerance, reduce exercise induced desaturation and improve the outcome of pulmonary rehabilitation in patients with chronic respiratory disease. It is not known whether it can be applied to increase exercise capacity in patients admitted with non-hypercapnic acute exacerbations of COPD (AECOPD). We investigated the acceptability and feasibility of using NIV for this purpose.</p> <p>Methods</p> <p>On a single occasion, patients admitted with an acute exacerbation of chronic respiratory disease who were unable to cycle for five minutes at 20 watts attempted to cycle using NIV and their endurance time (T<sub>lim</sub>) was recorded. To determine feasibility of this approach in clinical practice patients admitted with AECOPD were screened for participation in a trial of regular NIV assisted rehabilitation during their hospital admission.</p> <p>Results</p> <p>In 12 patients tested on a single occasion NIV increased T<sub>lim </sub>from 184(65) seconds to 331(229) seconds (p = 0.04) and patients desaturated less (median difference = 3.5%, p = 0.029). In the second study, 60 patients were admitted to hospital during a three month period of whom only 18(30)% were eligible to participate and of these patients, only four (7%) consented to participate.</p> <p>Conclusion</p> <p>NIV improves exercise tolerance in patients with acute exacerbations of chronic respiratory disease but the applicability of this approach in routine clinical practice may be limited.</p> <p>Trial registration</p> <p><url>http://www.controlled-trials.com/ISRCTN35692743</url></p

    Growth hormone responsive neural precursor cells reside within the adult mammalian brain

    Get PDF
    The detection of growth hormone (GH) and its receptor in germinal regions of the mammalian brain prompted our investigation of GH and its role in the regulation of endogenous neural precursor cell activity. Here we report that the addition of exogenous GH significantly increased the expansion rate in long-term neurosphere cultures derived from wild-type mice, while neurospheres derived from GH null mice exhibited a reduced expansion rate. We also detected a doubling in the frequency of large (i.e. stem cell-derived) colonies for up to 120 days following a 7-day intracerebroventricular infusion of GH suggesting the activation of endogenous stem cells. Moreover, gamma irradiation induced the ablation of normally quiescent stem cells in GH-infused mice, resulting in a decline in olfactory bulb neurogenesis. These results suggest that GH activates populations of resident stem and progenitor cells, and therefore may represent a novel therapeutic target for age-related neurodegeneration and associated cognitive decline

    Disposable sensors in diagnostics, food and environmental monitoring

    Get PDF
    Disposable sensors are low‐cost and easy‐to‐use sensing devices intended for short‐term or rapid single‐point measurements. The growing demand for fast, accessible, and reliable information in a vastly connected world makes disposable sensors increasingly important. The areas of application for such devices are numerous, ranging from pharmaceutical, agricultural, environmental, forensic, and food sciences to wearables and clinical diagnostics, especially in resource‐limited settings. The capabilities of disposable sensors can extend beyond measuring traditional physical quantities (for example, temperature or pressure); they can provide critical chemical and biological information (chemo‐ and biosensors) that can be digitized and made available to users and centralized/decentralized facilities for data storage, remotely. These features could pave the way for new classes of low‐cost systems for health, food, and environmental monitoring that can democratize sensing across the globe. Here, a brief insight into the materials and basics of sensors (methods of transduction, molecular recognition, and amplification) is provided followed by a comprehensive and critical overview of the disposable sensors currently used for medical diagnostics, food, and environmental analysis. Finally, views on how the field of disposable sensing devices will continue its evolution are discussed, including the future trends, challenges, and opportunities
    • 

    corecore