54 research outputs found

    PET brain imaging in HIV-associated neurocognitive disorders (HAND) in the era of combination antiretroviral therapy

    Get PDF
    Effective combination antiretroviral therapy (cART) has lead to a significant reduction in the prevalence and incidence of central nervous system (CNS) HIV-associated brain disease, particularly CNS opportunistic infections and HIV encephalitis. Despite this, cognitive deficits in people living with HIV, also known as HIV-associated neurocognitive disorders (HAND) have become more prevalent in recent years. The pathogenesis of HAND is likely to be multifactorial, however recent evidence suggests that brain microglial activation is the most likely pathogenic mechanism. Recent developments in positron emission tomography (PET) brain neuroimaging using novel brain radioligands targeting a variety of physiological changes in the brains of HIV-positive individuals have improved our understanding of the mechanisms associated with the development of HAND. This review will highlight recent PET brain neuroimaging studies in the cART era, focusing on physiological and neurochemical changes associated with HAND in people living with HIV

    Influence of computed tomography attenuation correction in myocardial perfusion imaging in obese population

    Get PDF
    Marked regional variations in myocardial activity that are not related to myocardial perfusion defects.Verify the influence of CT-AC inMPI results in patients with BMI between 30 and 35 and higher than 30 for male and female population

    Accuracy and cost-effectiveness of dynamic contrast-enhanced CT in the characterisation of solitary pulmonary nodules — the SPUtNIk study

    Get PDF
    Introduction:\textbf{Introduction:} Solitary pulmonary nodules (SPNs) are common on CT. The most cost-effective investigation algorithm is still to be determined. Dynamic contrastenhanced CT (DCE-CT) is an established diagnostic test not widely available in the UK currently. Methods and analysis:\textbf{Methods and analysis:} The SPUtNIk study will assess the diagnostic accuracy, clinical utility and cost-effectiveness of DCE-CT, alongside the current CT and 18-flurodeoxyglucose-positron emission tomography) (18^{18}FDG-PET)-CT nodule characterisation strategies in the National Health Service (NHS). Image acquisition and data analysis for 18^{18}FDG-PET-CT and DCE-CT will follow a standardised protocol with central review of 10% to ensure quality assurance. Decision analytic modelling will assess the likely costs and health outcomes resulting from incorporation of DCE-CT into management strategies for patients with SPNs. Ethics and dissemination:\textbf{Ethics and dissemination:} Approval has been granted by the South West Research Ethics Committee. Ethics reference number 12/SW/0206. The results of the trial will be presented at national and international meetings and published in an Health Technology Assessment (HTA) Monograph and in peer-reviewed journals.The trial is funded by the National Institute for Health Research HTA Programme (grant no: 09/22/117) and is being run by Southampton Clinical Trials Unit, directed by Professor Gareth Griffiths and part funded by Cancer Research UK. NRQ and RCR are part funded by the Cambridge Biomedical Research Centre and the Cancer Research Network: Eastern

    Impact of solitary pulmonary nodule size on qualitative and quantitative assessment using 18F-fluorodeoxyglucose PET/CT: the SPUTNIK trial

    Get PDF
    Purpose: To compare qualitative and semi-quantitative PET/CT criteria, and the impact of nodule size on the diagnosis of solitary pulmonary nodules in a prospective multicentre trial. / Methods: Patients with an SPN on CT ≥ 8 and ≤ 30 mm were recruited to the SPUTNIK trial at 16 sites accredited by the UK PET Core Lab. Qualitative assessment used a five-point ordinal PET-grade compared to the mediastinal blood pool, and a combined PET/CT grade using the CT features. Semi-quantitative measures included SUVmax of the nodule, and as an uptake ratio to the mediastinal blood pool (SURBLOOD) or liver (SURLIVER). The endpoints were diagnosis of lung cancer via biopsy/histology or completion of 2-year follow-up. Impact of nodule size was analysed by comparison between nodule size tertiles. / Results: Three hundred fifty-five participants completed PET/CT and 2-year follow-up, with 59% (209/355) malignant nodules. The AUCs of the three techniques were SUVmax 0.87 (95% CI 0.83;0.91); SURBLOOD 0.87 (95% CI 0.83; 0.91, p = 0.30 versus SUVmax); and SURLIVER 0.87 (95% CI 0.83; 0.91, p = 0.09 vs. SUVmax). The AUCs for all techniques remained stable across size tertiles (p > 0.1 for difference), although the optimal diagnostic threshold varied by size. For nodules  16 mm, an SUVmax ≥ 3.6 or visual PET uptake greater than the mediastinum was the most accurate. / Conclusion: In this multicentre trial, SUVmax was the most accurate technique for the diagnosis of solitary pulmonary nodules. Diagnostic thresholds should be altered according to nodule size. / Trial registration: ISRCTN - ISRCTN30784948. ClinicalTrials.gov - NCT0201306

    A systematic review of cerebral microdialysis and outcomes in TBI: relationships to patient functional outcome, neurophysiologic measures, and tissue outcome

    Get PDF
    OBJECTIVE: To perform a systematic review on commonly measured cerebral microdialysis (CMD) analytes and their association to: (A) patient functional outcome, (B) neurophysiologic measures, and (C) tissue outcome; after moderate/severe TBI. The aim was to provide a foundation for next-generation CMD studies and build on existing pragmatic expert guidelines for CMD. METHODS: We searched MEDLINE, BIOSIS, EMBASE, Global Health, Scopus, Cochrane Library (inception to October 2016). Strength of evidence was adjudicated using GRADE. RESULTS: (A) Functional Outcome: 55 articles were included, assessing outcome as mortality or Glasgow Outcome Scale (GOS) at 3-6 months post-injury. Overall, there is GRADE C evidence to support an association between CMD glucose, glutamate, glycerol, lactate, and LPR to patient outcome at 3-6 months. (B) Neurophysiologic Measures: 59 articles were included. Overall, there currently exists GRADE C level of evidence supporting an association between elevated CMD measured mean LPR, glutamate and glycerol with elevated ICP and/or decreased CPP. In addition, there currently exists GRADE C evidence to support an association between elevated mean lactate:pyruvate ratio (LPR) and low PbtO2. Remaining CMD measures and physiologic outcomes displayed GRADE D or no evidence to support a relationship. (C) Tissue Outcome: four studies were included. Given the conflicting literature, the only conclusion that can be drawn is acute/subacute phase elevation of CMD measured LPR is associated with frontal lobe atrophy at 6 months. CONCLUSIONS: This systematic review replicates previously documented relationships between CMD and various outcome, which have driven clinical application of the technique. Evidence assessments do not address the application of CMD for exploring pathophysiology or titrating therapy in individual patients, and do not account for the modulatory effect of therapy on outcome, triggered at different CMD thresholds in individual centers. Our findings support clinical application of CMD and refinement of existing guidelines

    Dynamic contrast-enhanced CT compared with positron emission tomography CT to characterise solitary pulmonary nodules : the SPUtNIk diagnostic accuracy study and economic modelling

    Get PDF
    Background Current pathways recommend positron emission tomography–computerised tomography for the characterisation of solitary pulmonary nodules. Dynamic contrast-enhanced computerised tomography may be a more cost-effective approach. Objectives To determine the diagnostic performances of dynamic contrast-enhanced computerised tomography and positron emission tomography–computerised tomography in the NHS for solitary pulmonary nodules. Systematic reviews and a health economic evaluation contributed to the decision-analytic modelling to assess the likely costs and health outcomes resulting from incorporation of dynamic contrast-enhanced computerised tomography into management strategies. Design Multicentre comparative accuracy trial. Setting Secondary or tertiary outpatient settings at 16 hospitals in the UK. Participants Participants with solitary pulmonary nodules of ≥ 8 mm and of ≤ 30 mm in size with no malignancy in the previous 2 years were included. Interventions Baseline positron emission tomography–computerised tomography and dynamic contrast-enhanced computer tomography with 2 years’ follow-up. Main outcome measures Primary outcome measures were sensitivity, specificity and diagnostic accuracy for positron emission tomography–computerised tomography and dynamic contrast-enhanced computerised tomography. Incremental cost-effectiveness ratios compared management strategies that used dynamic contrast-enhanced computerised tomography with management strategies that did not use dynamic contrast-enhanced computerised tomography. Results A total of 380 patients were recruited (median age 69 years). Of 312 patients with matched dynamic contrast-enhanced computer tomography and positron emission tomography–computerised tomography examinations, 191 (61%) were cancer patients. The sensitivity, specificity and diagnostic accuracy for positron emission tomography–computerised tomography and dynamic contrast-enhanced computer tomography were 72.8% (95% confidence interval 66.1% to 78.6%), 81.8% (95% confidence interval 74.0% to 87.7%), 76.3% (95% confidence interval 71.3% to 80.7%) and 95.3% (95% confidence interval 91.3% to 97.5%), 29.8% (95% confidence interval 22.3% to 38.4%) and 69.9% (95% confidence interval 64.6% to 74.7%), respectively. Exploratory modelling showed that maximum standardised uptake values had the best diagnostic accuracy, with an area under the curve of 0.87, which increased to 0.90 if combined with dynamic contrast-enhanced computerised tomography peak enhancement. The economic analysis showed that, over 24 months, dynamic contrast-enhanced computerised tomography was less costly (£3305, 95% confidence interval £2952 to £3746) than positron emission tomography–computerised tomography (£4013, 95% confidence interval £3673 to £4498) or a strategy combining the two tests (£4058, 95% confidence interval £3702 to £4547). Positron emission tomography–computerised tomography led to more patients with malignant nodules being correctly managed, 0.44 on average (95% confidence interval 0.39 to 0.49), compared with 0.40 (95% confidence interval 0.35 to 0.45); using both tests further increased this (0.47, 95% confidence interval 0.42 to 0.51). Limitations The high prevalence of malignancy in nodules observed in this trial, compared with that observed in nodules identified within screening programmes, limits the generalisation of the current results to nodules identified by screening. Conclusions Findings from this research indicate that positron emission tomography–computerised tomography is more accurate than dynamic contrast-enhanced computerised tomography for the characterisation of solitary pulmonary nodules. A combination of maximum standardised uptake value and peak enhancement had the highest accuracy with a small increase in costs. Findings from this research also indicate that a combined positron emission tomography–dynamic contrast-enhanced computerised tomography approach with a slightly higher willingness to pay to avoid missing small cancers or to avoid a ‘watch and wait’ policy may be an approach to consider. Future work Integration of the dynamic contrast-enhanced component into the positron emission tomography–computerised tomography examination and the feasibility of dynamic contrast-enhanced computerised tomography at lung screening for the characterisation of solitary pulmonary nodules should be explored, together with a lower radiation dose protocol. Study registration This study is registered as PROSPERO CRD42018112215 and CRD42019124299, and the trial is registered as ISRCTN30784948 and ClinicalTrials.gov NCT02013063

    Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI): A Prospective Longitudinal Observational Study

    Get PDF
    BACKGROUND: Current classification of traumatic brain injury (TBI) is suboptimal, and management is based on weak evidence, with little attempt to personalize treatment. A need exists for new precision medicine and stratified management approaches that incorporate emerging technologies. OBJECTIVE: To improve characterization and classification of TBI and to identify best clinical care, using comparative effectiveness research approaches. METHODS: This multicenter, longitudinal, prospective, observational study in 22 countries across Europe and Israel will collect detailed data from 5400 consenting patients, presenting within 24 hours of injury, with a clinical diagnosis of TBI and an indication for computed tomography. Broader registry-level data collection in approximately 20 000 patients will assess generalizability. Cross sectional comprehensive outcome assessments, including quality of life and neuropsychological testing, will be performed at 6 months. Longitudinal assessments will continue up to 24 months post TBI in patient subsets. Advanced neuroimaging and genomic and biomarker data will be used to improve characterization, and analyses will include neuroinformatics approaches to address variations in process and clinical care. Results will be integrated with living systematic reviews in a process of knowledge transfer. The study initiation was from October to December 2014, and the recruitment period was for 18 to 24 months. EXPECTED OUTCOMES: Collaborative European NeuroTrauma Effectiveness Research in TBI should provide novel multidimensional approaches to TBI characterization and classification, evidence to support treatment recommendations, and benchmarks for quality of care. Data and sample repositories will ensure opportunities for legacy research. DISCUSSION: Comparative effectiveness research provides an alternative to reductionistic clinical trials in restricted patient populations by exploiting differences in biology, care, and outcome to support optimal personalized patient management
    • …
    corecore