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Abstract

In order to estimate the location of an indoor mobile station (MS), estimated time-of-arrival (TOA) can be obtained
at each of several access points (APs). These TOA estimates can then be used to solve for the location of the MS.
Alternatively, it is possible to estimate the location of the MS directly by incorporating the received signals at all
APs in a direct estimator of position. This article presents a deeper analysis of a previously proposed maximum
likelihood (ML)-TOA estimator, including a uniqueness property and the behavior in nonline-of-sight (NLOS)
situations. Then, a ML direct location estimation technique utilizing all received signals at the various APs is
proposed based on the ML-TOA estimator. The Cramer-Rao lower bound (CRLB) is used as a performance
reference for the ML direct location estimator.
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1 Introduction
With the emergence of location-based applications and
the need for next-generation location-aware wireless
networks, location finding is becoming an important
problem. Indoor localization has recently started to
attract more attention due to increasing demands from
security, commercial and medical services. For example,
next generation corporate wireless local area networks
(WLAN) will utilize location-based techniques to
improve security and privacy [1]. The requirement for
high accuracy positioning in complex multipath chan-
nels and nonline-of-sight (NLOS) situations has made
the task of indoor localization very challenging as com-
pared to outdoor environments.
Conventionally, the positioning problem is solved via

an indirect (two-step) parameter estimation scheme.
First, the time-of-arrival (TOA) estimation at each access
point (AP) is performed. The TOA estimator estimates
the first arriving path delay, which corresponds to the
line-of-sight (LOS) distance between the transmitter and
the receiver assuming the LOS path exists. Then, these
TOA estimates from each AP are transmitted to a central
terminal at which the location estimation is carried out

by various algorithms, such as trilateration or least
squares fitting, etc. [2,3]. Recently, the direct location
estimation method has been proposed as another aspect
to the positioning problem [4]. Unlike the indirect meth-
ods which split the location estimation efforts between
the APs and the central terminal, the direct positioning
methods rely only on the central terminal to perform the
location estimation task. The APs just relay the received
signals to the central terminal for it to estimate the loca-
tion of the mobile station (MS). It has been shown that
the direct method can outperform the indirect method
[4].
For the indirect positioning methods, the first step is to

obtain an accurate TOA estimation. To separate closely
spaced channel paths, super-resolution techniques [5],
such as multiple signal classification (MUSIC), etc. [6-8],
are reported to be able to significantly improve the TOA
estimations as compared to the conventional autocorrela-
tion approach [9].
Maximum likelihood (ML) is a natural approach for

TOA estimation but in order to resolve the multipara-
meter issue that seems natural to the multipath environ-
ments, a novel ML-TOA estimator that only requires a
one-dimensional search is proposed in [10]. The ML-
TOA technique estimates only the first arriving path
delay based on the observation that this parameter is the
only quantity needed for positioning. It was found that in
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dense multipath environments, the ML-TOA estimation
outperforms the super-resolution methods discussed in
[11,12]. The effect of considering only the first arriving
path delay in positioning was studied in [13]. Based on
the analyses of the Cramer-Rao lower bound (CRLB), the
authors showed that if the paths are correlated then
including other paths could improve the TOA estimation
accuracy, however, they also pointed out that doing so
“would not help enhance the accuracy significantly but
merely increase the computational complexity.”
In this article, several important properties pertaining

to the ML-TOA estimator that were previously left
unanswered are established. First is the uniqueness of
the ML-TOA estimator. For TOA estimation in multi-
path environments, not only the additive noise but also
the multipath channels are random. Therefore, it is not
obvious that the estimates converge to the exact para-
meter when signal-to-noise ratio (SNR) increases. Here,
we demonstrate that the ML-TOA estimation provides
the unique, correct TOA in the absence of noise pro-
vided the channel statistics are known. The effects of
the NLOS situations are also discussed. The NLOS
situation is another major challenge for indoor position-
ing for it can cause large TOA estimation bias that in
turn result in large location estimation errors [14].
There are optimization methods which can be used to
mitigate the error due to NLOS. In [15,16], the optimi-
zation is carried out with respect to the unknown
mobile location or the NLOS bias. In [13,17,18], statisti-
cal estimation methods are proposed in the case that
the statistical knowledge such as the propagation scat-
tering models or the NLOS delays statistics are known.
In this article, the proposed ML-TOA is shown to be
able to incorporate the statistics of NLOS channels
automatically and thus reduce the estimation bias due
to NLOS path delays.
The direct positioning method has just started to

emerge as an interesting research topic and has been
shown to provide improvement in the location estimation
accuracy. Thus, in this article, in addition to the indirect
(two-step) method, we also propose a direct ML position-
ing algorithm based on the ML-TOA estimator. In [19],
the authors proposed a direct positioning method for
orthogonal-frequency-division-multiplexing (OFDM) sig-
nals. There, the APs are assumed to be equipped with
antenna arrays, the source is located in the far field and
the channel power delay profile has a significant path
while the rest paths are ignored. Here, we assume that
each AP has a single antenna and the channel has multi-
path. It is shown that our proposed ML direct location
estimator also posesses the uniqueness property thus its
estimates are reliable. Furthermore, the CRLB of the
direct location estimator is used as a performance refer-
ence. The simulation results show that the proposed

direct positioning method has better performance than
the indirect method and is close to the CRLB for some
channels. While we focus on an OFDM signal structure,
which is mathematically convenient and has not been
studied extensively in the indoor localization problem,
the approach can be generalized to any signal type.
The remainder of the article is organized as follows.

Section 2 presents the mathematical formulation of the
TOA estimation problem and the ML-TOA estimator.
Section 3 presents analyses of the proposed ML-TOA
estimator including the uniqueness property, the beha-
vior of the cost function and the effects of the NLOS
situations. In Section 4, a ML direct positioning algo-
rithm is proposed based on the ML-TOA estimation
algorithm. The uniqueness property associated with the
ML direct location estimator is also shown. In Section
5, the performance of ML-TOA estimator and the pro-
posed direct algorithm are demonstrated through com-
puter simulations. Finally, conclusions are presented in
Section 6.

2 ML-TOA estimation
One OFDM symbol duration is T + TG, where TG is the
guard interval, and T is the receiver integration time over
which the sub-carriers are orthogonal. A single symbol of
the transmitted OFDM signal is assumed to have N sub-
carriers with transmitted sequence vector d = [d0 d1 · · ·
dN-1]

T. Assume that the signal is received after passing
through a multipath channel with impulse response

h(t) =
∑L−1

i=0 aiδ (t − τi) in which 0 ≤ τ0 ≤ τ1 ≤ · · · ≤ τL-1
≤ TG and ai is the complex channel gain of the ith path.
After the standard receiver sampling, guard interval
removal and fast-Fourier-transformation (FFT) proces-
sing, the kth element of the FFT output vector is (see
[10] for details)

yk = dk

(
L−1∑
i=0

aie
−j 2π

T kτi

)
+ nk, (1)

where nk is complex Gaussian noise with variance
s2 = N0.
Conventional ML estimation is formulated in such a

way that the unknown parameter is a multivariate vec-
tor, i.e., θ = [a0 ... aL-1 τ0 ... τL-1]

T. When the number of
paths L is large, the computational complexity becomes
prohibitive. However, only the first path delay, τ0, is
required for location estimation purpose. Therefore, we
focus the ML estimation on the TOA only, assuming a
statistical model of the channel.
In this section, we assume a direct LOS path exists.

The case of NLOS will be discussed in Section 3.
Denote τ0 as the TOA, the path delay that corresponds
to the first arriving path. Then, referenced to τ0, the
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other path delays can be written as
τi = τ0 + (τi − τ0) = τ0 + τ̄i . Equation (1) then becomes

yk = Hkdke
−j 2π

T
kτ0

+ nk, (2)

where Hk is given by Hk =
∑L−1

i=0 aie
−j 2π

T kτ̄i and is the

zero delay frequency response at the kth subcarrier.
Define the subcarrier frequency response vector as h =

[H0 H1 ... HN-1]
T. We assume at first that h is a zero

mean, circular complex Gaussian vector with known

covariance matrix Kh = E
{
hhH

}
, where the H denotes

Hermitian transpose [20]. This Gaussian assumption is
for mathematical development and the proposed TOA
estimator, as was demonstrated in [10] for Ray-Trace
data, performs well in practical situations. Equation (2)
can then be used to express the complete FFT output
vector as

y = G(τ0)Dh + n, (3)

where

G(τ0) = diag
{
1, e−j 2π

T τ0 , e−j 2π
T 2τ0 , . . . , e−j 2π

T (N−1)τ0

}
and

D = diag {d0, d1, d2,..., dN-1} consists of the transmitted
symbols. We shall assume that time delay estimation is
performed on an OFDM training symbol so that D is
known. As shown in [10], the ML solution for TOA τ0 is

τ̂0 = argmax
τ

Q(τ ) = argmax
τ

yHG(τ )FG(τ )Hy, (4)

where the cost function of the estimator is defined as

Q(τ ) � yHG(τ )FG(τ )Hy, (5)

where F = DR (s2I + RH DH DR)-1 RH DH and R is a
rank L(< N) factor of Kh as Kh = RRH .

3 Performance characteristics of the ML-TOA
estimator
When estimating TOA in a dense multipath environ-
ment, the accuracy is impacted not only by the noise,
but also by the presence of the many echoes of the sig-
nal due to the multipath. In this section, we first
demonstrate that when noise is absent and we are in
the presence of multipath only, then the proposed esti-
mator yields the correct TOA uniquely, provided the
covariance matrix Kh is exactly known. For the rest of
the article, we assume that D = I without loss of
generality.

3.1 Uniqueness of the ML-TOA estimation
Assume for the present that noise is absent, i.e., s2 = 0.
Since Kh can be factored using the Singular Value

Decomposition Kh = (UΛ1/2UH) (UΛ1/2UH) = RRH, the
channel can be expressed as

h = Rz, (6)

where z Î CL is a zero mean Gaussian random vector
with covariance matrix �{zzH} = I and L is the rank of
Kh. In this case, the received FFT output vector will be
y = G(τ0)h = G(τ0)Rz.
Using this expression and the fact that when noise is

absent the F matrix reduces to F = R (RHR)-1 RH and
the fact that GH(τ)G(τ0) = GH(τ - τ0), the cost function Q
(τ) in (5) becomes Q(τ) = zH RHGH(τ0)G(τ)R (RH R)-1

RHGH(τ)G(τ0)Rz = ||PRG
H(τ - τ0)Rz||

2 where PR = R
(RH R)-1 RH is the orthogonal projector onto the range
space of R, i.e., Range (R), and this follows from the fact
that P2

R = PR . Since PR is an orthogonal projector, it can
be seen that given a realization of z, Q(τ) is maximized
if and only if GH (τ - τ0) Rz Î Range (R). Obviously, this
is the case when τ = τ0 and the G matrix reduces to an
identity matrix. We would like to investigate whether
there are other possible maximizing values of τ.

To simplify the notation, let θ = 2π
T (τ − τ0) and

define G(θ) ≜ GH(τ - τ0). We are looking for conditions
on θ such that G(θ)Rz Î Range(R), θ = 0 being an
obvious solution. We note first that we can convert this
problem into the deterministic one of finding conditions
on θ such that Range (G (θ) R) ⊆ Range(R). Certainly
this latter condition is sufficient to guarantee that G(θ)
Rz Î Range(R). It is also true that if Range (G(θ)R) ⊈
Range(R), then G(θ)Rz ∉ Range(R) with probability one.
To see this, note that Range (G(θ)R) ⊈ Range(R) is
equivalent to [Range (R)]⊥ ⊈ [Range (G(θ)R)]⊥ where ⊥
denotes the orthogonal complement. Let v denote any
non-zero vector such that v Î [Range (R)]⊥ but v ∉
[Range (G(θ)R)]⊥. Then, vHG(θ)R ≠ 0 and the random
variable vHG(θ)Rz is Gaussian with non-zero variance
and will be non-zero with probability one. Therefore,
with probability one, vH G(θ)Rz ≠ 0 and G(θ)Rz ∉
Range(R) because it is not orthogonal to v.
Now, the deterministic condition Range (G(θ)R) ⊆

Range (R) is equivalent to the existence of some matrix
A such that G(θ)R = RA. Multiplying on the left by G
yields G2R = GRA = RA2, and continuing this operation
yields GnR = RAn, for all positive integers n. It follows
easily that for any polynomial f (λ) =

∑
n cnλ

n ,

f (G)R = Rf (A), (7)

where f (A) =
∑

n cnA
n is a matrix polynomial. From

the structure of G, we see that

f (G) = diag{f (1), f (ejθ), f (ej2θ), . . . , f (ej(N−1)θ)}. (8)
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Equation (7) says that any matrix of the form (8) can
multiply R on the left, and the resulting matrix f(G)R
satisfies Range (f(G)R) ⊆ Range (R).
Let us now assume that Range(R) includes the flat

channel vector hf = 1 where 1 is a vector with all unit
elements. This essentially assumes that a flat fading
channel is one of the possible realizations so that there
is a vector z such that 1 = Rz. Multiplying (7) by z
yields f(G)1 = Rf(A)z which means that, from (6),

f (G)1 =
[
f (1) f (ejθ) f (ej2θ) · · · f (ej(N−1)θ)

]T
(9)

is a realizable channel vector for any polynomial f(l).
Now, let L be the rank of R and assume that L < N.

Then, the N values {1, ejθ, ej2θ,..., ej(N-1)θ} cannot all be
distinct for, if they were, the channel vector (9) could be
chosen arbitrarily by suitable choice of interpolating
polynomial f(l), contrary to the fact that the realizable
channels are restricted to the L dimensional space
Range (R). This is due to the well-known fact that a
polynomial can always be found, which takes arbitrary
values on any given set of arguments. In fact, we can
see that at most L of the values {1, ejθ, ej2θ,..., ej(N-1)θ}
can be distinct for a similar reason. Now suppose there
are actually q distinct values. It follows that the first q
values must be distinct because, for example, if ejrθ =
ejpθ where r < p ≤ q then ej (p-r)θ = 1 and there will be
only p - r - 1 < q distinct values.
We have now shown that there must be an integer

q ≤ L such that ejqθ = 1. Then, the sequence {1, ejθ,
ej2θ,..., ej(N-1)θ} cycles as follows {1, ejθ, ej2θ,..., ej(q-1)θ, 1,
ejθ, ej2θ,...}. Suppose for example that q = 2. Then, the
sequence is {1, ejθ, 1, ejθ,...,1, ejθ,...}. Choose an interpo-
lating polynomial such that f(1) = 1 and f(ejθ) = -1.
Then, from (9) the vector of alternating plus and minus
ones, i.e., f(G)1 = [1 -1 1 -1 1...]T would be a realizable
channel vector. But this highly oscillatory channel fre-
quency response would imply a very large channel delay
spread. Therefore, if the delay spread of the channel is
not too large, the value q = 2 would not be realistic.
Similar examples of unrealistic channel frequency
response can be constructed for any q greater than 1.
Therefore, we are left with q = 1 in which case the only
solution is ejqθ = 1 so that θ = 0 and the solution is
unique. The simulation results in Section 5.1 also
demonstrate this uniqueness property of the ML-TOA
estimator.

3.2 ML-TOA estimation in NLOS situations
In this section, the effect of NLOS on the ML-TOA esti-
mator is discussed and we show that the NLOS case is
very naturally incorporated into the proposed ML-TOA
estimator. Recall (1), (2) and (3) which illustrate how

the TOA τ0 is factored out and incorporated into the G
matrix. These equations were developed with the under-
standing that τ0 was the path delay of the direct LOS
path. From now on, however, we simply define TOA τ0
as the time it would take for an electromagnetic wave to
travel the straight line that links the MS and AP,
whether or not such a direct LOS path actually exists.
In the case when a LOS path does not exist, (1) would
be modified to read

yk = dk

(
L−1∑
i=1

aie
−j 2π

T kτi

)
+ nk, (10)

where the i = 0 term has been removed since the LOS
path is absent. Nevertheless, with τ0 defined as above,
we may still express the actual path delays in terms of
τ0 as τi = τ0 + (τi − τ0) = τ0 + τ̄i , and we obtain a modi-
fied (2) as

yk = Hkdke
−j 2π

T kτ0 + nk, (11)

where Hk is now given by Hk =
∑L−1

i=1 aie
−j 2π

T kτ̄i , and is

the zero delay frequency response at the kth subcarrier
when no LOS path is present. We maintain the earlier
definition of the subcarrier frequency response vector as
h = [H0 H1 ... HN-1]

T and (11) can be used to express
the complete FFT output vector as

y = G(τ0)Dh + n. (12)

Note that (12) is exactly the same as (3). The only dif-
ference in this NLOS case is the modification of the ele-
ments of the h vector due to the absence of the direct
path. The derivation of the ML estimator now follows
exactly as the case in which a direct path is present, and
the channel statistics as measured by the procedure out-
lined below will reflect the actual environment, whether
or not there is always a direct path present.
In practice, no matter what the multipath structure,

the channel covariance matrix Kh can be estimated off-
line by averaging measurements at each AP while the
MS transmits at some known locations chosen in a ran-
dom fashion. The detailed procedure is as follows: Step
1 : For a given, known, AP location, measure the
received FFT output vector y(i) at the AP for the ith MS
location. Step 2 : Since, in this measurement phase, both
MS and AP locations are known, TOA of the ith MS

transmission (at ith location), i.e., τ
(i)
0

, can be computed

by dividing the distance between them by the speed of
light, and the G(i) matrix can be determined by

G(i) = diag

{
1, e−j 2π

T τ0
(i)
, e−j 2π

T 2τ
(i)
0 , . . . , e−j 2π

T
(N−1)τ0(i)

}
.
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Then, for this ith transmission, the FFT output vector
y in Equation (12) is measured and an estimated
snapshot of h(i) can be found by

ĥ
(i)

= (G(i))−1y(i) = h(i) + (G(i))−1n(i) . Step 3: After col-

lecting measurements at P different MS locations, the
estimated channel covariance matrix is obtained by

K̂h = 1
P

∑P

i=1
ĥ
(i)

(
ĥ
(i)

)H
.

For future reference we now define the NLOS delay.
For the NLOS case in which a LOS path does not exist,
τ1 in (10) will be the first arriving path delay. Then, we
define “NLOS delay” = τ1 - τ0, where τ0 is the line of
sight distance divided by the speed of light, as described
above. The NLOS delay is sometimes called the excess
delay and is the time difference between the first arriv-
ing actual NLOS path and the direct LOS time delay, τ0.
At this point, we emphasize that the NLOS case is

very naturally incorporated into the proposed ML-TOA
estimator. Recall that in the entire development, includ-
ing the estimation procedure for K̂h above, TOA is
defined as the time it takes for the electromagnetic
waves to travel the straight line that links the MS and
AP, whether or not such a LOS path actually exists.
Therefore, in Step 2 above the TOA can still be com-
puted given the location of MS and AP even in the
absence of a LOS path, since TOA is known whether or
not a direct LOS exists. This is based on the idea that
motivates the ML-TOA estimation. That is to separate
the desired parameter from the statistics of the multi-
path channel. For the purpose of positioning, the desired
parameter is the “generalized” TOA that we defined in
the beginning of this section. In this way, the statistical
properties of the measured channels will naturally incor-
porate the NLOS properties of the channel and no extra
step or a prior information about the NLOS statistics is
required to mitigate the NLOS effects. In Section 5.1,
we present simulation results which show the TOA esti-
mation performance for both LOS and NLOS cases.
Finally, we point out that, since (12) is identical to (3),
the uniqueness proof in Section 3.1 applies to the NLOS
case as well.

3.3 Properties of the cost function Q(τ)
The TOA estimation is a nonlinear problem and is
known to exhibit ambiguities which could result in large
errors [21,22]. In the large error regime, the CRLB can-
not be attained. In this section, the behavior of the cost
function Q(τ) is studied for two multipath channel mod-
els. It is also shown that for single path channels, the
ML-TOA estimator is unbiased and the estimation error
variance is inversely proportional to the bandwidth.
Consider first the extreme case in which there is only

a direct path at τ0 = 0 and no additive noise. We have h

= a1 where a is the random path gain. Then, it is easily
seen that Kh = σ 2

a 11
T where σ 2

a is the variance of a,

then R = sa1, F = c11T and y = h = a1, and the cost

function (5) becomes Q(τ ) = α|1TG1|2 = β

(
sin(Nπ

T τ)

sin(π
T τ)

)2

where a, b are some constants. The width of the main
lobe is inversely proportional to the number of subcar-
riers N or equivalently the bandwidth. In Figure 1, one
realization of the noise free cost function Q(τ) in a sin-
gle path channel is shown for the 802.11a configuration
where N = 64 (see Section 5). It can be seen that it clo-
sely matches the theoretical curve where the training
sequence is assumed to be all 1’s.
In the case of multipath, we first investigate the cost

function Q(τ) when noise is absent. In Figure 2, one rea-
lization of the noise free cost function for Exponential
channel model and WLAN channel model A (see Sec-
tion 5 for detailed description of the channel models
used in this article) are plotted. Note the noise free cost
function for the Exponential channel is fairly flat. As
demonstrated in Section 3.1 if Kh is perfectly known the
actual peak of the cost function is at zero offset, but at
high SNR, where the flattening effect is observed, an
error in Kh can result in biased TOA estimation (see
Figure 3). The noise free cost function for WLAN chan-
nel model A shows that a clear peak is present thus is
more robust to the error from the estimated channel
covariance matrix at high SNR region (see Figure 4). For
all other WLAN channel models, i.e., B to D, we have
observed that the cost functions have similar character-
istics to those for channel model A.

4 ML direct positioning method
In this section, we develop a ML direct estimation of the
MS position, (x, y), based on the received FFT vectors
from several APs. The proposed ML direct location esti-
mation is shown to provide the correct, unambiguous
location in the absence of noise given the channel
statistics.
Conventionally, the positioning problem is solved via

an indirect (two-step) parameter estmation scheme. First,
TOA estimation at each AP is performed. Then, these
TOA estimates are transmitted to a central terminal at
which the location estimation is carried out. It is some-
times assumed that the TOA estimates in the first step
are zero mean Gaussian random variables and then,
based on this assumption, the second step applies a least
square procedure, which in this case is also a ML estima-
tor, to estimate the position of MS [23-25]. However, it is
known that in multipath environments, the TOA estima-
tion can be biased and the estimation error is not Gaus-
sian in practice [25-27]. For these reasons, we propose a
ML direct positioning method, based on the ML-TOA
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estimator described in Section 2, to estimate the position
of MS directly.
For simplicity, in this article, the MS location is

assumed to be on a two-dimensional surface, but the
derivation can be extended to three dimensions as well.
Consider M APs located at height z above the MS with x,
y locations (xi, yi) (i = 1, 2,..., M) and an MS at an
unknown location (x, y). The distance from the MS to

the ith AP is then di =
√
(x − xi)

2 + (y − yi)
2 + z2 . There-

fore, the TOA from the MS to the ith AP is

τ
(i)
0 = di

C =

√
(x − xi)

2 + (y − yi)
2 + z2

C
, where C is the

speed of light. Notice that in this expression, the TOA

τ
(i)
0

is a function of the unknown position of MS, i.e.,
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Figure 1 Noise free cost function Q(τ) for single path channel.
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Figure 2 Noise free cost function Q(τ).
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(x, y). We can estimate the position of the MS directly,
based on the FFT output vectors at all M APs as follows.
From (3), assuming D = I, the complete FFT output

vector at the ith AP is

y(i) = G(i)h(i) + n(i), (13)

where G(i) = diag

{
1, e−j 2π

CT

√
(x−xi)

2+(y−yi)
2+z2

, . . . , e− j(N−1) 2π
CT

√
(x−xi)

2+(y−yi)
2+z2

}
.

The noise vectors n(i) are independent, zero mean Gaus-

sian with covariance matrix σ 2
i I and h(i) is assumed to

be a zero mean, circular complex Gaussian vector with

known covariance matrix K(i)
h = �

{
h(i)

(
h(i)

)H
}
. The
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channels from the MS to each AP are assumed to be
independent. Then, the joint p.d.f. of the received FFT
vectors from all APs is

p(y(1), y(2), . . . , y(M)|(x, y)) = 1

πNM
∏M

i=1 Det(K(i)
y )

exp

(
−

M∑
i=1

(y(i))H(K(i)
y )

−1
y(i)

)
, (14)

where Det(·) denotes the matrix determinant and

K(i)
y = �

{
y(i)(y(i))

H
}
= G(i)K(i)

h (G(i))H + σ 2
i I . Next, we

show the term
∏M

i=1 Det
(
K(i)
y

)
is independent of (x, y).

Using the matrix identity, Det (I + AB) = Det(I + BA),
each determinant factor inside the product can be
expressed as

Det
(
K(i)
y

)
= σ 2N

i Det
(
I + (G(i))

H
G(i)K(i)

h /σ 2
i

)
. Using the

fact that (G(i))H G(i) = I, the above determinant becomes

Det
(
K(i)
y

)
= σ 2N

i Det(I + K(i)
h /σ 2

i ) which does not depend

on (x, y).
Using (14), the ML solution for (x, y) is given as

(x̂, ŷ) = argmax
(x,y)

ln p(y(1), y(2), . . . , y(M)|(x, y))

= argmin
(x,y)

M∑
i=1

(y(i))H(K(i)
y )−1y(i),

(15)

where we use the notation p (y(1), y(2),..., y(M)|(x, y)) to
denote the joint p.d.f. of y(1), y(2),..., y(M) for a generic
value (x, y), the location of the MS.

Next, factor K(i)
h

as K(i)
h = R(i)(R(i))H and using the

well-known fact that (I + AB)-1 = I - A(I + BA)-1 B, we

can write
(
K(i)
y

)−1
as

(
K(i)
y

)−1
=

1

σ 2
i

[
I − G(i)R(i)

(
σ 2
i I + (R(i))

H
R(i)

)−1
(R(i))

H
(G(i))

H
]
. (16)

Use this in (15) and define

Q(i)(x, y) � 1

σ 2
i

(y(i))HG(i)F(i)(G(i))Hy(i), (17)

whereF(i) = R(i)
[
σ 2
i I + (R(i))

H
R(i)

]−1
(R(i))H . Then, the

ML direct estimation for the MS location (x, y) is

(x̂, ŷ) = argmax
(x,y)

M∑
i=1

Q(i)(x, y), (18)

where the unknown parameter (x, y) is embedded in
G(i). Note that F(i) can be computed off-line given σ 2

i

and K(i)
h
.

Next, we show that the ML direct positioning estimate
based on (18) is unambiguously correct in the absence

of noise. Denote (x0, y0) and τ
(i)
0

the true location of the

MS and the true TOA for the ith AP, respectively. From
the uniqueness property shown in Section 3.1, it follows

that, given i, Q(i)(τ (i)) = 1
σ 2
i
(y(i))HG(i)F(i)(G(i))Hy(i) is

maximized only at τ (i) = τ
(i)
0 =

√
(x0−xi)

2+(y0−yi)
2+z2

C
.

Assume that the ML direct location estimate is not
unique. Then, from (18), there exists (x, y) ≠ (x0, y0)
such that

M∑
i=1

Q(i)(x, y) =
M∑
i=1

Q(i)(x0, y0). (19)

However, from the uniqueness property, it follows that

Q(i)(x0, y0) = Q(i)
(
τ
(i)
0

)
> Q(i)

(
τ (i)

)
for all τ (i) �= τ

(i)
0
.

Therefore, (19) is true if and only if there exists (x, y)

≠(x0, y0) that satisfies τ (i) = τ
(i)
0
. In other words, there

exist some (x, y) ≠ (x0, y0) such that the following sys-
tem of equations are satisfied:

τ
(i)
0 =

di
C

=

√
(x − xi)

2 + (y − yi)
2 + z2

C
, i = 1, 2, . . . , M. (20)

However, by the trilateration principle that is com-
monly used in positioning, this cannot be true when M
≥ 3 and thus a contradiction. Therefore, the proposed
ML direct position estimate is unique.

5 Simulation results
The wireless system simulated here is based on the IEEE
802.11a standard [28]. The long training sequence is
used for localization. The simulation parameters of the
transmitted OFDM signal are: BW = 20 MHz, N = 64
subcarriers are used, T = 3.2 and TG = 1.6 μs. Two peri-
ods of the long sequence are transmitted to improved
channel estimation accuracy, yielding the total duration
of the long training sequence, TG + 2T = 8 μs. Two
channel models are used in the simulations. One is the
Exponential channel model similar to the ones used in
[13,29] and the other is the WLAN channel model [30].
The power delay profiles for the five WLAN channels
are shown in Table 1. The root-mean-square (RMS)
delays for channels A through E are 50, 100, 150, 140
and 250 ns, respectively. The Exponential channel is
generated assuming the path delays represent a Poisson
process with average time between points equal to tint
and an Exponential power delay profile with the RMS
amplitudes decaying by the fraction r over a tmax delay
spread. In the simulations, the parameters for Exponen-
tial channels are chosen to be tint = 10 ns, tmax = 200 ns
and decay r = 0.003. With these parameters, there are
on average 20 paths in total and the power decay is -2.5
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dB for each path. The channel covariance matrix K̂h is
estimated using the procedures described in Section 3.2
with 100 samples and 40 dB received signal SNR. The
received SNR is defined as, assuming the transmit signal

power is unity, SNR � �{
L−1
i=0 |a2i |}
σ 2

.

5.1 Performance of the ML-TOA estimator
The performance of the ML-TOA estimator described in
Section 2 has been thoroughly presented in [10] in the
case when there is a significant LOS path present. In this
section, we first discuss its performance in NLOS channels
and then consider the effects of matched vs. mismatched
statistics. As discussed in Section 3.2, the ML-TOA esti-
mation procedure takes the statistics of NLOS channels
into account automatically. Recall that the term “NLOS
delay” refers to the time difference between the first arriv-
ing path delay and the TOA as defined in Section 3.2. If a
direct LOS path exists, the NLOS delay is zero. Gaussian
and Exponential distributions are assumed for the NLOS
delay in the simulations [31,32]. In Figure 5, the NLOS
delay is assumed to be Gaussian with mean 15 ns and var-
iance 10 or Exponential with mean b = 3 ns. The bottom
curve (LOS/LOS Kh) is the performance when the LOS
path exists. The curves (NLOS/NLOS Kh) are the situa-
tions when the channel contains no LOS path. The curves
(NLOS/LOS Kh) serve as references and they represent a

NLOS case but when estimating K̂h, τ
(i)
0

is chosen to

equal the first arriving path delay instead of the TOA. The
figure shows that the NLOS performance is comparable to
that of the LOS case when channel measurements are
made in the same NLOS scenario. If the LOS covariance
matrix is used in the NLOS case (NLOS/LOS Kh), how-
ever, an increased bias is seen.
Next, we compare the performance of the ML-TOA

estimator when the Exponential channel model is used
vs. when the WLAN channel models are used, and also
discuss the dependence of its performance on the num-
ber of samples used in estimating the covariance matrix.
The error-bar plot is used in Figures 3 and 4. The center

of the error bar is the mean of the estimation error and
the length of the bar equals twice the standard deviation.
In order to make it easier to distinguish different curves
in the error-bar plot, they are off-set in the horizontal
axis deliberately. These statistics are computed after 10,
000 trials. Figure 3 shows the performance of the ML-
TOA estimator for the Exponential channel in the case
where a LOS path exists. In order to show the robustness
of the ML-TOA estimator, we compare the cases of mis-
matched and matched statistics. In the mismatched case,
which corresponds to the practical application, the esti-
mated covariance matrix K̂h is measured as in Section
3.2 using 100 averaged samples. For the matched covar-
iance matrix case, the channel is generated by h = Rz to
ensure that its covariance matrix is strictly equal to Kh.
From Figure 3, we can see that in the SNR range 0-40
dB, the estimation error ΔKh does not cause much per-
formance degradation for the Exponential channel. At
high SNR region, as discussed in Section 3.3, due to the
flattening of the cost function, ΔKh results in biased esti-
mates. From the performance of the matched case, it is
seen indirectly that the cost function has a unique maxi-
mizer, for at high SNR, the estimation is unbiased and
the variance is zero.
For the WLAN channel models, Figure 4 shows the

performance for different channel types. By comparing
Figure 4 with Figure 3, it seems that the performance for
the WLAN channel models is slightly better than for the
Exponential channels. This is related to the fact that, for
these channels, the cost function has clear peak (see Fig-
ure 2). Channel type A yields worst performance among
the WLAN channels, which may be due to the fact that
its power delay profile is most similar to an Exponential
channel which has a flat noise free cost function.
Figure 6 shows the performance of the WLAN chan-

nel A as the number of samples used for estimating Kh

is varied. Since K̂h is a random quantity for any given
number of samples, we use the following process in gen-
erating this figure. When the number of samples is P,

K̂h is estimated using P averaged random channels (MS

Table 1 Power delay profiles for the WLAN channels

Model A Delay (ns) 0 10 20 30 40 50 60 70 80 90 110 140 170 200 240 290 340 390

Power (dB) 0 -0.9 -1.7 -2.6 -3.5 -4.3 -5.2 -6.1 -6.9 -7.8 -4.7 -7.3 -9.9 -12.5 -13.7 -18 -22.4 -26.7

Model B Delay (ns) 0 10 20 30 50 80 110 140 180 230 280 330 380 430 490 560 640 730

Power (dB) -2.6 -3.0 -3.5 -3.9 0 -1.3 -2.6 -3.9 -3.4 -5.6 -7.7 -9.9 -12.1 -14.3 -15.4 -18.4 -20.7 -24.6

Model C Delay (ns) 0 10 20 30 50 80 110 140 180 230 280 330 400 490 600 730 880 1050

Power (dB) -3.3 -3.6 -3.9 -4.2 0 -0.9 -1.7 -2.6 -1.5 -3.0 -4.4 -5.9 -5.3 -7.9 -9.4 -13.2 -16.3 -21.2

Model D Delay (ns) 0 10 20 30 50 80 110 140 180 230 280 330 400 490 600 730 880 1050

Power (dB) 0 -10 -10.3 -10.6 -6.4 -7.2 -8.1 -9.0 -7.9 -9.4 -10.8 -12.3 -11.7 -14.3 -15.8 -19.6 -22.7 -27.6

Model E Delay (ns) 0 10 20 40 70 100 140 190 240 320 430 560 710 880 1070 1280 1510 1760

Power (dB) -4.9 -5.1 -5.2 -0.8 -1.3 -1.9 -0.3 -1.2 -2.1 0 -1.9 -2.8 -5.4 -7.3 -10.6 -13.4 -17.4 -20.9
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locations) with SNR at 40 dB. Next, using this specific

K̂h , 100 random ML-TOA estimation trials are per-
formed for each SNR value and the errors are recorded.
Next, a new K̂h is generated using another P averaged
samples, and another 100 random ML-TOA estimation
trials are performed for each SNR value. This is
repeated for 10 different estimated K̂h matrices, for a
total of 1, 000 TOA estimation error values, and the sta-
tistics are then plotted to yield the curves in Figure 6.
Figures 7 and 8 show the corresponding results for the
WLAN channel D and Exponential channel. As one
would expect, there is some fluctuation in the curves,
which decreases with increasing P, but for P ≥ 100 the
curves track each other fairly closely. For the remainder
of the article, P = 100 is used in the simulations
presented.
Table 2 presents some error statistics for Kh itself. For

each value of P (number of averaged samples) the table
shows the maximum (over all elements of K̂h ) of the

normalized RMS error in the elements of K̂h over 1,
000 random estimates. The error is the difference
between K̂h and the “true” covariance matrix as esti-
mated using 10, 000 samples. Then, the normalization is
obtained by dividing the RMS error in each element by
the magnitude of the “true” covariance matrix. In prac-
tice, for a given indoor environment, an initial estima-
tion of Kh would be carried out off-line prior to the
employment of the ML-TOA procedure for localization.
Subsequent additional measurements for this purpose

could then be added later to improve the estimation
accuracy if necessary.

5.2 Performance of ML direct positioning
We compare the performance of two localization
schemes. One is the proposed ML direct location tech-
nique discussed in Section 4. The other is an indirect
(two-step) method which first uses the ML-TOA esti-
mation approach described in Section 2 for TOA esti-
mates then least square localization solvers described in
[3], namely the TOA-least square (TOA-LS) and TOA-
weighted constraint LS (TOA-WCLS) techniques, are
adopted to solve for the location of the MS. The least
square localization solvers can be used with any TOA
estimation technique for the individual AP’s, but here
we use the ML-TOA estimation approach described in
Section 2 so that both techniques have the benefit of
the measured channel statistics. A five AP geometry is
considered in a 100 m × 100 m square with AP coordi-
nates; (5, 10), (50, 50), (80, 20), (10, 75) and (90, 90),
respectively. We show results for three MS locations,
namely at (x, y) = (20, 20), (20, 90) and (70, 70). The
channel impulse responses for each of the five APs are
generated randomly using the aforementioned channel
models.
In the simulations, the average SNR is defined as

1
M

∑M
i=1 SNRi , where SNRi is the signal-to-noise power

ratio at the ith AP. The path loss exponent is assumed
to be 3 for indoor environments. The weighting matrix
W used in TOA-WCLS is then chosen such that the
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diagonal elements are wii =
SNRi


M
i=1SNRi

. The results shown

here are obtained by running 10,000 random trials.
Figures 9 through 12 are for MS location at (x, y) =

(20, 20). Figures 9 and 10 show the performance com-
parisons between the direct method and the indirect
(TOA-LS and TOA-WCLS) methods for the Exponen-
tial channel models. Figure 9 shows the 90% percentage

error values versus average SNR. The 90% percentage
error value is the value such that 90% of all errors are
less than that value. As expected, the direct method out-
performs the TOA-LS and TOA-WCLS methods, and
the TOA-WCLS performs better than the TOA-LS,
which imposes no weighting constraint. For the Expo-
nential channel model, it is seen that due to the bias of
the TOA estimations, the direct and indirect methods
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Figure 6 WLAN channel A: (a) TOA estimation error with respect to number of averaged samples for Kh; (b) expanded scale.
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do not converge at high SNR, with the direct method
maintaining its superiority. This is one rationale behind
using the direct method. Figure 10 shows the mean
square error (MSE) of the direct and indirect methods.
Again, it is seen that the direct method has the best per-
formance. Figures 11 and 12 show the performance with
WLAN channel models A and D. Since the ML-TOA
estimates of WLAN channels are unbiased when SNR is

high (see Figure 4), we do not show the performance at
very high SNR for the performance converges. Figure 12
illustrates the CRLB as a performance reference for the
WLAN channels. The CRLB is a lower bound on the
variance of any unbiased estimator. Thus, we show it as
a performance reference for the WLAN channels. The
expressions for the CRLB can be found in Appendix A
(due to limited space the detailed derivation is omitted).
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When computing the CRLB, each estimated channel

covariance matrix K(i)
h

is obtained by time-averaging 10,

000 random generated channels. The direct method
again shows the best performance. Furthermore, the ML
direct method is shown to have performance close to
the CRLB. One can see that the performance for the
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Figure 8 Exponential channel: (a) TOA estimation error with respect to number of averaged samples for Kh; (b) expanded scale.

Table 2 Kh estimation error statistics

Samples Max. normalized RMS error

25 1.422 × 10-2

100 3.347 × 10-3

500 2.614 × 10-3

1, 000 2.302 × 10-3
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WLAN model is better than for the Exponential model
due to biased ML-TOA estimates in the latter. Figures
13 and 14 show the performance comparisons in
WLAN channel model A for MS at (20, 90) and (70,
70). These two figures show results consistent with Fig-
ures 11 and 12.

6 Conclusions
Several important results regarding the ML-TOA esti-
mator for dense multipath indoor channels have been
established. First, the unambiguous accuracy of the ML-
TOA solution is proved in the noise free case, when
multipath is the only detrimental effect of the channel.
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Figure 9 90% percentage error for direct and indirect (two-stage) methods using Exponential channel model.

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

Average SNR (dB)

M
S

E

LS
Direct
WCLS

Figure 10 Mean square error (MSE) in dB scale for direct and indirect (two-stage) methods using Exponential channel model.

Yen and Voltz EURASIP Journal on Wireless Communications and Networking 2011, 2011:189
http://jwcn.eurasipjournals.com/content/2011/1/189

Page 14 of 19



Then, the behavior in the NLOS case was discussed.
Because of its statistical basis, the ML-TOA technique
automatically incorporates the NLOS case in which
there does not actually exist a direct path from the AP
to the MS. The performance of the ML-TOA estimator
was also detailed. It was shown that for single path
channels, the ML-TOA estimator is unbiased and the
estimation error variance is inversely proportional to the
bandwidth. For multipath channels, the error is

dependent upon the specific characteristics of the chan-
nels. Finally, we have shown how to extend the statisti-
cal channel model (ML-TOA) approach to a direct ML
localization technique which enables us to obtain a ML
estimator that directly estimates the location of the MS.
Results were compared to an indirect approach in which
TOA estimates are obtained by the ML-TOA estimator
and a least squares technique is then used to localize
the MS. The direct ML location estimation is shown to

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

20

Average SNR (dB)
(a)

90
%

 p
er

ce
nt

ag
e 

er
ro

r (
m

)

LS
Direct
WCLS

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

20

Average SNR (dB)
(b)

90
%

 p
er

ce
nt

ag
e 

er
ro

r (
m

)

LS
Direct
WCLS

Figure 11 90% percentage error for direct and indirect (two-stage) methods: (a) WLAN channel model A; (b) WLAN channel model D.
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outperform the indirect methods and obtain perfor-
mance close to the CRLB for some channel types.

Appendix A: Cramer-Rao lower bound for the ML
direct position estimator
For the position estimation problem in which the
unknown parameter is u = [x y]T , Fisher’s Information
Matrix [33] is given by

I(u) = –

⎡⎣�{
∂2ln p(y|u)

∂x2

}
�

{
∂2ln p(y|u)

∂x∂y

}
�

{
∂2ln p(y|u)

∂y∂x

}
�

{
∂2ln p(y|u)

∂y2

}⎤⎦.

From (14) and the well-known identity tr(AB) = tr
(BA), the elements of the Fisher’s information matrix
are given by

�

{
∂2 ln p(y|u)

∂x2

}
=

M∑
i=1

2

σ 2
i

Re
{
tr

[(
D(i)

c C(i)
R + (D(i)

x )
2
C(i)
R +D(i)

x C(i)
R (D(i)

x )
H
)
K(i)
y

]}
, (21)

�

{
∂2 ln p(y|u)

∂y2

}
=

M∑
i=1

2

σ 2
i

Re
{
tr

[(
D(i)

c C(i)
R + (D(i)

y )
2
C(i)
R +D(i)

y C(i)
R (D(i)

y )
H
)
K(i)
y

]}
(22)
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and

�

{
∂2 ln p(y|u)

∂x∂y

}
=

M∑
i=1

2

σ 2
i

Re
{
tr

[(
D(i)

xy C
(i)
R +D(i)

x C(i)
R (D(i)

y )
H
)
K(i)
y

]}
, (23)

where D(i)
x = diag

{
0,−j 2π(x−xi)

CdiT
,−2j 2π(x−xi)

CdiT
, . . . ,−(N − 1)j 2π(x−xi)

CdiT

}
,

D(i)
y = diag

{
0,−j 2π(y−yi)

CdiT
,−2j 2π(y−yi)

CdiT
, . . . ,−(N − 1)j 2π(y−yi)

CdiT

}
,
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Figure 13 Location error comparisons for MS at (x, y) = (20, 90) in WLAN channel model A: (a) 90% percentage error; (b) mean square
error (MSE).
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D(i)
c = diag

{
0,−j 2π

CdiT
,−j2 2π

CdiT
, . . . ,−j(N − 1) 2π

CdiT

}
,D(i)

xy = D(i)
x D(i)

y ,C(i)
R = G(i)F(i)(G(i))H

and Re (·) denotes the real part of the argument.
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Figure 14 Location error comparisons for MS at (x, y) = (70, 70) in WLAN model channel A: (a) 90% percentage error; (b) mean square
error (MSE).
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