9 research outputs found

    SDSS Absolute Magnitudes for Thin Disc Stars based on Trigonometric Parallaxes

    Full text link
    We present a new luminosity-colour relation based on trigonometric parallaxes for thin disc main-sequence stars in SDSS photometry. We matched stars from the newly reduced Hipparcos catalogue with the ones taken from 2MASS All-Sky Catalogue of Point Sources, and applied a series of constraints, i.e. relative parallax errors (σπ/π0.05\sigma_{\pi}/\pi\leq0.05), metallicity (0.30[M/H]0.20-0.30\leq[M/H]\leq0.20 dex), age (0t100\leq t \leq 10 Gyr) and surface gravity (logg>4\log g>4), and obtained a sample of thin disc main-sequence stars. Then, we used our previous transformation equations (Bilir et al. 2008a) between SDSS and 2MASS photometries and calibrated the MgM_{g} absolute magnitudes to the (gr)0(g-r)_{0} and (ri)0(r-i)_0 colours. The transformation formulae between 2MASS and SDSS photometries along with the absolute magnitude calibration provide space densities for bright stars which saturate the SDSS magnitudes.Comment: 7 pages, including 7 figures and 2 tables, accepted for publication in MNRA

    The asymmetric drift, the local standard of rest, and implications from RAVE data

    Get PDF
    Context. The determination of the local standard of rest (LSR), which corresponds to the measurement of the peculiar motion of the Sun based on the derivation of the asymmetric drift of stellar populations, is still a matter of debate. The classical value of the tangential peculiar motion of the Sun with respect to the LSR was challenged in recent years, claiming a significantly larger value. Aims. We present an improved Jeans analysis, which allows a better interpretation of the measured kinematics of stellar populations in the Milky Way disc. We show that the Radial Velocity Experiment (RAVE) sample of dwarf stars is an excellent data set to derive tighter boundary conditions to chemodynamical evolution models of the extended solar neighbourhood. Methods. We propose an improved version of the Stromberg relation with the radial scalelengths as the only unknown. We redetermine the asymmetric drift and the LSR for dwarf stars based on RAVE data. Additionally, we discuss the impact of adopting a different LSR value on the individual scalelengths of the subpopulations. Results. Binning RAVE stars in metallicity reveals a bigger asymmetric drift (corresponding to a smaller radial scalelength) for more metal-rich populations. With the standard assumption of velocity-dispersion independent radial scalelengths in each metallicity bin, we redetermine the LSR. The new Stromberg equation yields a joint LSR value of V-circle dot = 3.06 +/- 0.68 km s(-1), which is even smaller than the classical value based on Hipparcos data. The corresponding radial scalelength increases from 1.6 kpc for the metal-rich bin to 2.9 kpc for the metal-poor bin, with a trend of an even larger scalelength for young metal-poor stars. When adopting the recent Schonrich value of V-circle dot = 12.24 km s(-1) for the LSR, the new Stromberg equation yields much larger individual radial scalelengths of the RAVE subpopulations, which seem unphysical in part. Conclusions. The new Stromberg equation allows a cleaner interpretation of the kinematic data of disc stars in terms of radial scalelengths. Lifting the LSR value by a few km s(-1) compared to the classical value results in strongly increased radial scalelengths with a trend of smaller values for larger velocity dispersions

    Luminosity-Colours relations for thin disc main-sequence stars

    Full text link
    In this study we present the absolute magnitude calibrations of thin disc main-sequence stars in the optical (MVM_{V}), and in the near-infrared (MJM_{J}). Thin disc stars are identified by means of Padova isochrones, and absolute magnitudes for the sample are evaluated via the newly reduced Hipparcos data. The obtained calibrations cover a large range of spectral types: from A0 to M4 in the optical and from A0 to M0 in the near-infrared. Also, we discuss the of effects binary stars and evolved stars on the absolute magnitude calibrations. The usage of these calibrations can be extended to the estimation of galactic model parameters for the thin disc individually, in order to compare these parameters with the corresponding ones estimated by χ2min\chi{^2}_{min} statistics (which provides galactic model parameters for thin and thick discs, and halo simultaneously) to test any degeneracy between them. The calibrations can also be used in other astrophysical researches where distance plays an important role in that study.Comment: 8 pages, including 12 figures and 4 tables, accepted for publication in MNRA

    CCD BV and 2MASS photometric study of the open cluster NGC 1513

    Full text link
    We present CCD BV and JHKs_{s} 2MASS photometric data for the open cluster NGC 1513. We observed 609 stars in the direction of the cluster up to a limiting magnitude of V19V\sim19 mag. The star count method shows that the centre of the cluster lies at α2000=04h09m36s\alpha_{2000}=04^{h}09^{m}36^{s}, δ2000=492843\delta_{2000}=49^{\circ}28^{'}43^{''} and its angular size is r=10r=10 arcmin. The optical and near-infrared two-colour diagrams reveal the colour excesses in the direction of the cluster as E(BV)=0.68±0.06E(B-V)=0.68\pm0.06, E(JH)=0.21±0.02E(J-H)=0.21\pm0.02 and E(JKs)=0.33±0.04E(J-K_{s})=0.33\pm0.04 mag. These results are consistent with normal interstellar extinction values. Optical and near-infrared Zero Age Main-Sequences (ZAMS) provided an average distance modulus of (mM)0=10.80±0.13(m-M)_{0}=10.80\pm0.13 mag, which can be translated into a distance of 1440±801440\pm80 pc. Finally, using Padova isochrones we determined the metallicity and age of the cluster as Z=0.015±0.004Z=0.015\pm 0.004 ([M/H]=0.10±0.10[M/H]=-0.10 \pm 0.10 dex) and log(t/yr)=8.40±0.04\log (t/yr) = 8.40\pm0.04, respectively.Comment: 15 pages, 12 figures and 4 tables, accepted for publication in Astrophysics & Space Scienc

    Local stellar kinematics from RAVE data - I. Local standard of rest

    Get PDF
    We analyse a sample of 82850 stars from the RAdial Velocity Experiment (RAVE) survey, with well-determined velocities and stellar parameters, to isolate a sample of 18026 high-probability thin-disc dwarfs within 600 pc of the Sun. We derive space motions for these stars, and deduce the solar space velocity with respect to the local standard of rest. The peculiar solar motion we derive is in excellent agreement in radial U⊙ and vertical W⊙ peculiar motions with other recent determinations. Our derived tangential peculiar velocity, V⊙, agrees with very recent determinations, which favour values near 13kms-1, in disagreement with earlier studies. The derived values are not significantly dependent on the comparison sample chosen, or on the method of analysis. The local Galaxy seems very well dynamically relaxed, in a near symmetric potential.9 page(s

    Galactic abundance gradients from Cepheids

    Get PDF
    <p>Context. Galactic abundance gradients set strong constraints to chemo-dynamical evolutionary models of the Milky Way. Given the period-luminosity relations that provide accurate distances and the large number of spectral lines, Cepheids are excellent tracers of the present-day abundance gradients.</p><p>Aims. We want to measure the Galactic abundance gradient of several chemical elements. While the slope of the Cepheid iron gradient did not vary much from the very first studies, the gradients of the other elements are not that well constrained. In this paper we focus on the inner and outer regions of the Galactic thin disk.</p><p>Methods. We use high-resolution spectra (FEROS, ESPADONS, NARVAL) to measure the abundances of several light (Na, Al), a (Mg, Si, S, Ca), and heavy elements (Y, Zr, La, Ce, Nd, Eu) in a sample of 65 Milky Way Cepheids. Combining these results with accurate distances from period-Wesenheit relations in the near-infrared enables us to determine the abundance gradients in the Milky Way.</p><p>Results. Our results are in good agreement with previous studies on either Cepheids or other tracers. In particular, we confirm an upward shift of +/- 0.2 dex for the Mg abundances, as has recently been reported. We also confirm the existence of a gradient for all the heavy elements studied in the context of a local thermodynamic equilibrium analysis. However, for Y, Nd, and especially La, we find lower abundances for Cepheids in the outer disk than reported in previous studies, leading to steeper gradients. This effect can be explained by the differences in the line lists used by different groups.</p><p>Conclusions. Our data do not support a flattening of the gradients in the outer disk, in agreement with recent Cepheid studies and chemo-dynamical simulations. This is in contrast to the open cluster observations but remains compatible with a picture where the transition zone between the inner disk and the outer disk would move outward with time.</p>
    corecore