121 research outputs found

    Possible role of Krüppel-like factor 5 in the remodeling of small airways and pulmonary vessels in chronic obstructive pulmonary disease

    Get PDF
    BACKGROUND: Small airway remodeling is an important cause of the airflow limitation in chronic obstructive pulmonary disease (COPD). A large population of patients with COPD also have pulmonary hypertension. Krüppel-like factor 5 (KLF5) is a zinc-finger transcription factor that contributes to tissue remodeling in cardiovascular diseases. Here, we evaluate the possible involvement of KLF5 in the remodeling of small airways and pulmonary vessels in COPD. METHODS: Lung tissues were obtained from 23 control never-smokers, 17 control ex-smokers and 24 ex-smokers with COPD. The expression of KLF5 in the lung tissues was investigated by immunohistochemistry. We investigated whether oxidative/nitrosative stress, which is a major cause of the pathogenesis in COPD, could augment the production of KLF5. We examined the role of KLF5 in the stress-mediated tissue remodeling responses. We also investigated the susceptibility of KLF5 expression to nitrosative stress using bronchial fibroblasts isolated from the lung tissues. RESULTS: The expression of KLF5 was up-regulated in the small airways and pulmonary vessels of the COPD patients and it was mainly expressed in bronchial fibroblasts and cells of the pulmonary vessels. The extent of the KLF5 expression in the small airway of the COPD group had a significant correlation with the severity of the airflow limitation. Oxidative/nitrosative stress augmented the production of KLF5 in lung fibroblasts as well as the translocation of KLF5 into the nuclei. Silencing of KLF5 suppressed the stress-augmented differentiation into myofibroblasts, the release of collagens and metalloproteinases. Bronchial fibroblasts from the patients with COPD highly expressed KLF5 compared to those from the control subjects under basal condition and were more susceptible to the induction of KLF5 expression by nitrosative stress compared to those from the control subjects. CONCLUSION: We provide the first evidence that the expression of KLF5 is up-regulated in small airways and pulmonary vessels of patients with COPD and may be involved in the tissue remodeling of COPD

    Deep Near-infrared Spectroscopy of Passively Evolving Galaxies at z ≳ 1.4

    Get PDF
    We present the results of new near-IR spectroscopic observations of passive galaxies at z ≳ 1.4 in a concentration of BzK-selected galaxies in the COSMOS field. The observations have been conducted with Subaru/MOIRCS, and have resulted in absorption lines and/or continuum detection for 18 out of 34 objects. This allows us to measure spectroscopic redshifts for a sample that is almost complete to K_AB = 21. COSMOS photometric redshifts are found in fair agreement overall with the spectroscopic redshifts, with a standard deviation of ~0.05; however, ~30% of objects have photometric redshifts systematically underestimated by up to ~25%. We show that these systematic offsets in photometric redshifts can be removed by using these objects as a training set. All galaxies fall in four distinct redshift spikes at z = 1.43, 1.53, 1.67, and 1.82, with this latter one including seven galaxies. SED fits to broadband fluxes indicate stellar masses in the range of ~4-40 × 10^10 M_☉ and that star formation was quenched ~1 Gyr before the cosmic epoch at which they are observed. The spectra of several individual galaxies have allowed us to measure their Hδ_F indices and the strengths of the 4000 Å break, which confirms their identification as passive galaxies, as does a composite spectrum resulting from the co-addition of 17 individual spectra. The effective radii of the galaxies have been measured on the COSMOS HST/ACS i_(F814W)-band image, confirming the coexistence at these redshifts of passive galaxies, which are substantially more compact than their local counterparts with others that follow the local effective radius-stellar mass relation. For the galaxy with the best signal-to-noise spectrum we were able to measure a velocity dispersion of 270 ± 105 km s^(–1) (error bar including systematic errors), indicating that this galaxy lies closely on the virial relation given its stellar mass and effective radius

    Hidden non-Fermi liquid behavior due to crystal field quartet

    Full text link
    We study a realistic Kondo model for crystal field quartet ground states having magnetic and non-magnetic (quadrupolar) exchange couplings with conduction electrons, using the numerical renormalization group method. We focus on a local effect dependent on singlet excited states coupled to the quartet, which reduces the non-magnetic coupling significantly and drives non-Fermi liquid behavior observed in the calculated quadrupolar susceptibility. A crossover from the non-Fermi liquid state to the Fermi liquid state is characterized by a small energy scale very sensitive to the non-magnetic coupling. On the other hand, the Kondo temperature observed in the magnetic susceptibility is less sensitive. The different crystal-field dependence of the two exchange couplings may be related to the different xx dependence of quadrupolar and magnetic ordering temperatures in Cex_xLa1x_{1-x}B6_6.Comment: 7 pages, 5 EPS figures, REVTe

    MOIRCS Deep Survey. VIII. Evolution of Star Formation Activity as a Function of Stellar Mass in Galaxies since z~3

    Full text link
    We study the evolution of star formation activity of galaxies at 0.5<z<3.5 as a function of stellar mass, using very deep NIR data taken with Multi-Object Infrared Camera and Spectrograph (MOIRCS) on the Subaru telescope in the GOODS-North region. The NIR imaging data reach K ~ 23-24 Vega magnitude and they allow us to construct a nearly stellar mass-limited sample down to ~ 10^{9.5-10} Msun even at z~3. We estimated star formation rates (SFRs) of the sample with two indicators, namely, the Spitzer/MIPS 24um flux and the rest-frame 2800A luminosity. The SFR distribution at a fixed Mstar shifts to higher values with increasing redshift at 0.5<z<3.5. More massive galaxies show stronger evolution of SFR at z>~1. We found galaxies at 2.5<z<3.5 show a bimodality in their SSFR distribution, which can be divided into two populations by a constant SSFR of ~2 Gyr^{-1}. Galaxies in the low-SSFR group have SSFRs of ~ 0.5-1.0 Gyr^{-1}, while the high-SSFR population shows ~10 Gyr^{-1}. The cosmic SFRD is dominated by galaxies with Mstar = 10^{10-11} Msun at 0.5<z<3.5, while the contribution of massive galaxies with Mstar = 10^{11-11.5} Msun shows a strong evolution at z>1 and becomes significant at z~3, especially in the case with the SFR based on MIPS 24um. In galaxies with Mstar = 10^{10-11.5} Msun, those with a relatively narrow range of SSFR (<~1 dex) dominates the cosmic SFRD at 0.5<z<3.5. The SSFR of galaxies which dominate the SFRD systematically increases with redshift. At 2.5<z<3.5, the high-SSFR population, which is relatively small in number, dominates the SFRD. Major star formation in the universe at higher redshift seems to be associated with a more rapid growth of stellar mass of galaxies.Comment: 16 pages, 13 figures, accepted for publication in Ap

    Signatures of valence fluctuations in CeCu2Si2 under high pressure

    Full text link
    Simultaneous resistivity and a.c.-specific heat measurements have been performed under pressure on single crystalline CeCu2Si2 to over 6 GPa in a hydrostatic helium pressure medium. A series of anomalies were observed around the pressure coinciding with a maximum in the superconducting critical temperature, TcmaxT_c^{max}. These anomalies can be linked with an abrupt change of the Ce valence, and suggest a second quantum critical point at a pressure Pv4.5P_v \simeq 4.5 GPa, where critical valence fluctuations provide the superconducting pairing mechanism, as opposed to spin fluctuations at ambient pressure. Such a valence instability, and associated superconductivity, is predicted by an extended Anderson lattice model with Coulomb repulsion between the conduction and f-electrons. We explain the T-linear resistivity found at PvP_v in this picture, while other anomalies found around PvP_v can be qualitatively understood using the same model.Comment: Submitted to Phys. Rev.

    MOIRCS Deep Survey IV: Evolution of Galaxy Stellar Mass Function Back to z ~ 3

    Full text link
    We use very deep near-infrared (NIR) imaging data obtained in MOIRCS Deep Survey (MODS) to investigate the evolution of the galaxy stellar mass function back to z~3. The MODS data reach J=24.2, H=23.1, K=23.1 (5sigma, Vega magnitude) over 103 arcmin^2 (wide) and J=25.1, H=23.7, K=24.1 over 28 arcmin^2 (deep) in the GOODS-North region. The wide and very deep NIR data allow us to measure the number density of galaxies down to low stellar mass (10^9-10^10 Msun) even at high redshift with high statistical accuracy. The normalization of the mass function decreases with redshift and the integrated stellar mass density becomes ~ 8-18% of the local value at z~2 and ~ 4-9% at z~3, which are consistent with results of previous studies in general fields. Furthermore, we found that the low-mass slope becomes steeper with redshift from alpha ~- 1.3 at z~1 to alpha ~- 1.6 at z~3, and that the evolution of the number density of low-mass (10^9-10^10 Msun) galaxies is weaker than that of M* (~10^11 Msun) galaxies. This indicates that the contribution of low-mass galaxies to the total stellar mass density has been significant at high redshift. The steepening of the low-mass slope with redshift is opposite trend expected from the stellar mass dependence of the specific star formation rate reported in previous studies. The present result suggests that the hierarchical merging process overwhelmed the effect of the stellar mass growth by star formation and was very important for the stellar mass assembly of these galaxies at 1<~z<~3.Comment: 21 pages, 18 figures, accepted for publication in Ap

    The Hyper Suprime-Cam SSP Survey: Overview and Survey Design

    Full text link
    Hyper Suprime-Cam (HSC) is a wide-field imaging camera on the prime focus of the 8.2m Subaru telescope on the summit of Maunakea in Hawaii. A team of scientists from Japan, Taiwan and Princeton University is using HSC to carry out a 300-night multi-band imaging survey of the high-latitude sky. The survey includes three layers: the Wide layer will cover 1400 deg2^2 in five broad bands (grizygrizy), with a 5σ5\,\sigma point-source depth of r26r \approx 26. The Deep layer covers a total of 26~deg2^2 in four fields, going roughly a magnitude fainter, while the UltraDeep layer goes almost a magnitude fainter still in two pointings of HSC (a total of 3.5 deg2^2). Here we describe the instrument, the science goals of the survey, and the survey strategy and data processing. This paper serves as an introduction to a special issue of the Publications of the Astronomical Society of Japan, which includes a large number of technical and scientific papers describing results from the early phases of this survey.Comment: 14 pages, 7 figures, 5 tables. Corrected for a typo in the coordinates of HSC-Wide spring equatorial field in Table

    A z = 1.82 Analog of Local Ultra-massive Elliptical Galaxies

    Get PDF
    We present observations of a very massive galaxy at z = 1.82 that show that its morphology, size, velocity dispersion, and stellar population properties are fully consistent with those expected for passively evolving progenitors of today's giant ellipticals. These findings are based on a deep optical rest-frame spectrum obtained with the Multi-Object InfraRed Camera and Spectrograph on the Subaru Telescope of a high-z passive galaxy candidate (pBzK) from the COSMOS field, for which we accurately measure its redshift of z = 1.8230 and obtain an upper limit on its velocity dispersion σ_* < 326 km s^(–1). By detailed stellar population modeling of both the galaxy broadband spectral energy distribution and the rest-frame optical spectrum, we derive a star formation-weighted age and formation redshift of t_(sf) ≃ 1-2 Gyr and z_(form) ≃ 2.5-4, and a stellar mass of M_* ≃ (3-4) × 10^(11) M_☉. This is in agreement with a virial mass limit of M_(vir) < 7 × 10^(11) M_☉, derived from the measured σ_* value and stellar half-light radius, as well as with the dynamical mass limit based on the Jeans equations. In contrast to previously reported super-dense passive galaxies at z ~ 2, the present galaxy at z = 1.82 appears to have both size and velocity dispersion similar to early-type galaxies in the local universe with similar stellar mass. This suggests that z ~ 2 massive and passive galaxies may exhibit a wide range of properties, then possibly following quite different evolutionary histories from z ~ 2 to z = 0
    corecore