91 research outputs found
Identification and Characterization of Ixodes scapularis Antigens That Elicit Tick Immunity Using Yeast Surface Display
Repeated exposure of rabbits and other animals to ticks results in acquired resistance or immunity to subsequent tick bites and is partially elicited by antibodies directed against tick antigens. In this study we demonstrate the utility of a yeast surface display approach to identify tick salivary antigens that react with tick-immune serum. We constructed an Ixodes scapularis nymphal salivary gland yeast surface display library and screened the library with nymph-immune rabbit sera and identified five salivary antigens. Four of these proteins, designated P8, P19, P23 and P32, had a predicted signal sequence. We generated recombinant (r) P8, P19 and P23 in a Drosophila expression system for functional and immunization studies. rP8 showed anti-complement activity and rP23 demonstrated anti-coagulant activity. Ixodes scapularis feeding was significantly impaired when nymphs were fed on rabbits immunized with a cocktail of rP8, rP19 and rP23, a hall mark of tick-immunity. These studies also suggest that these antigens may serve as potential vaccine candidates to thwart tick feeding
Functional Role of Dimerization of Human Peptidylarginine Deiminase 4 (PAD4)
Peptidylarginine deiminase 4 (PAD4) is a homodimeric enzyme that catalyzes Ca2+-dependent protein citrullination, which results in the conversion of arginine to citrulline. This paper demonstrates the functional role of dimerization in the regulation of PAD4 activity. To address this question, we created a series of dimer interface mutants of PAD4. The residues Arg8, Tyr237, Asp273, Glu281, Tyr435, Arg544 and Asp547, which are located at the dimer interface, were mutated to disturb the dimer organization of PAD4. Sedimentation velocity experiments were performed to investigate the changes in the quaternary structures and the dissociation constants (Kd) between wild-type and mutant PAD4 monomers and dimers. The kinetic data indicated that disrupting the dimer interface of the enzyme decreases its enzymatic activity and calcium-binding cooperativity. The Kd values of some PAD4 mutants were much higher than that of the wild-type (WT) protein (0.45 µM) and were concomitant with lower kcat values than that of WT (13.4 s−1). The Kd values of the monomeric PAD4 mutants ranged from 16.8 to 45.6 µM, and the kcat values of the monomeric mutants ranged from 3.3 to 7.3 s−1. The kcat values of these interface mutants decreased as the Kd values increased, which suggests that the dissociation of dimers to monomers considerably influences the activity of the enzyme. Although dissociation of the enzyme reduces the activity of the enzyme, monomeric PAD4 is still active but does not display cooperative calcium binding. The ionic interaction between Arg8 and Asp547 and the Tyr435-mediated hydrophobic interaction are determinants of PAD4 dimer formation
Tsetse GmmSRPN10 has anti-complement activity and is important for successful establishment of trypanosome infections in the fly midgut
The complement cascade in mammalian blood can damage the alimentary tract of haematophagous arthropods. As such, these animals have evolved their own repertoire of complement-inactivating factors, which are inadvertently exploited by blood-borne pathogens to escape complement lysis. Unlike the bloodstream stages, the procyclic (insect) stage of Trypanosoma brucei is highly susceptible to complement killing, which is puzzling considering that a tsetse takes a bloodmeal every 2–4 days. In this study, we identified four tsetse (Glossina morsitans morsitans) serine protease inhibitors (serpins) from a midgut expressed sequence tag (EST) library (GmmSRPN3, GmmSRPN5, GmmSRPN9 and GmmSRPN10) and investigated their role in modulating the establishment of a T. brucei infection in the midgut. Although not having evolved in a common blood-feeding ancestor, all four serpins have an active site sharing remarkable homology with the human complement C1-inhibitor serpin, SerpinG1. RNAi knockdown of individual GmmSRPN9 and GmmSRPN10 genes resulted in a significant decreased rate of infection by procyclic form T. brucei. Furthermore, recombinant GmmSRPN10 was both able to inhibit the activity of human complement-cascade serine proteases, C1s and Factor D, and to protect the in vitro killing of procyclic trypanosomes when incubated with complement-activated human serum. Thus, the secretion of serpins, which may be part of a bloodmeal complement inactivation system in tsetse, is used by procyclic trypanosomes to evade an influx of fresh trypanolytic complement with each bloodmeal. This highlights another facet of the complicated relationship between T. brucei and its tsetse vector, where the parasite takes advantage of tsetse physiology to further its chances of propagation and transmission
Novel immunomodulators from hard ticks selectively reprogramme human dendritic cell responses
Hard ticks subvert the immune responses of their vertebrate hosts in order to feed for much longer periods than other blood-feeding ectoparasites; this may be one reason why they transmit perhaps the greatest diversity of pathogens of any arthropod vector. Tick-induced immunomodulation is mediated by salivary components, some of which neutralise elements of innate immunity or inhibit the development of adaptive immunity. As dendritic cells (DC) trigger and help to regulate adaptive immunity, they are an ideal target for immunomodulation. However, previously described immunoactive components of tick saliva are either highly promiscuous in their cellular and molecular targets or have limited effects on DC. Here we address the question of whether the largest and globally most important group of ticks (the ixodid metastriates) produce salivary molecules that specifically modulate DC activity. We used chromatography to isolate a salivary gland protein (Japanin) from Rhipicephalus appendiculatus ticks. Japanin was cloned, and recombinant protein was produced in a baculoviral expression system. We found that Japanin specifically reprogrammes DC responses to a wide variety of stimuli in vitro, radically altering their expression of co-stimulatory and co-inhibitory transmembrane molecules (measured by flow cytometry) and their secretion of pro-inflammatory, anti-inflammatory and T cell polarising cytokines (assessed by Luminex multiplex assays); it also inhibits the differentiation of DC from monocytes. Sequence alignments and enzymatic deglycosylation revealed Japanin to be a 17.7 kDa, N-glycosylated lipocalin. Using molecular cloning and database searches, we have identified a group of homologous proteins in R. appendiculatus and related species, three of which we have expressed and shown to possess DC-modulatory activity. All data were obtained using DC generated from at least four human blood donors, with rigorous statistical analysis. Our results suggest a previously unknown mechanism for parasite-induced subversion of adaptive immunity, one which may also facilitate pathogen transmission
Immunomodulatory effects of tick saliva on dermal cells exposed to \u3cem\u3eBorrelia burgdorferi\u3c/em\u3e, the agent of Lyme disease
Background: The prolonged feeding process of ixodid ticks, in combination with bacterial transmission, should lead to a robust inflammatory response at the blood-feeding site. Yet, factors present in tick saliva may down-regulate such responses, which may be beneficial to spirochete transmission. The primary goal of this study was to test the hypothesis that tick saliva, in the context of Borrelia burgdorferi, can have widespread effects on the production of immune mediators in skin.
Methods: A cross-section of tick feeding on skin was examined histologically. Human THP-1 cells stimulated with B. burgdorferi and grown in the presence or absence of tick saliva were examined by human DNA microarray, cytokine bead array, sandwich ELISA, and qRT-PCR. Similar experiments were also conducted using dermal fibroblasts.
Results: Tick feeding on skin showed dermal infiltration of histiocytes and granulocytes at the bite location. Changes in monocytic transcript levels during co-culture with B. burgdorferi and saliva indicated that tick saliva had a suppressive effect on the expression of certain pro-inflammatory mediators, such as IL-8 (CXCL8) and TLR2, but had a stimulatory effect on specific molecules such as the Interleukin 10 receptor, alpha subunit (IL-10RA), a known mediator of the immunosuppressive signal of IL-10. Stimulated cell culture supernatants were analyzed via antigen-capture ELISA and cytokine bead array for inflammatory mediator production. Treatment of monocytes with saliva significantly reduced the expression of several key mediators including IL-6, IL-8 and TNF-alpha. Tick saliva had an opposite effect on dermal fibroblasts. Rather than inhibiting, saliva enhanced production of pro-inflammatory mediators, including IL-8 and IL-6 from these sentinel skin cells.
Conclusions: The effects of ixodid tick saliva on resident skin cells is cell type-dependent. The response to both tick and pathogen at the site of feeding favors pathogen transmission, but may not be wholly suppressed by tick saliva
Calf health from birth to weaning. I. General aspects of disease prevention
Calfhood diseases have a major impact on the economic viability of cattle operations. This is the first in a three part review series on calf health from birth to weaning, focusing on preventive measures. The review considers both pre- and periparturient management factors influencing calf health, colostrum management in beef and dairy calves and further nutrition and weaning in dairy calves
Expression of Lectin-Like Transcript 1, the Ligand for CD161, in Rheumatoid Arthritis
Precursor Th17 lineage cells expressing CD161 are implicated in Rheumatoid Arthritis (RA) pathogenesis. CD4+CD161+ T-cells accumulate in RA joints and may acquire a non classical Th1 phenotype. The endogenous ligand for CD161 is lectin-like transcript 1 (LLT1). CD161/LLT1 ligation may co-stimulate T-cell IFN-γ production. We investigated the presence and identity of LLT1-expressing cells in RA synovial fluid (SF) and synovial tissue (ST). We also assessed levels of soluble LLT1 (sLLT1) in different phases of RA development.Paired samples of peripheral blood mononuclear cells (MC) and SFMC (n = 14), digested ST cells (n = 4) and ST paraffin sections (n = 6) from late-stage RA were analyzed for LLT1 expression by flow cytometry and immunohistochemistry. sLLT1 was measured using a sandwich ELISA. Sera and SF from late-stage RA (n = 26), recently diagnosed RA patients (n = 39), seropositive arthralgia patients (SAP, n = 31), spondyloarthropathy patients (SpA, n = 26) and healthy controls (HC, n = 31) were assayed.In RA SF, LLT1 was expressed by a small proportion of monocytes. In RA ST, LLT1-expressing cells were detected in the lining, sublining layer and in areas with infiltrates. The LLT1 staining pattern overlapped with the CD68 staining pattern. FACS analysis of digested ST confirmed LLT1 expression by CD68+ cells. Elevated systemic sLLT1 was found in all patient groups.In RA joints, LLT1 is expressed by cells of the monocyte/macrophage lineage. Serum levels of sLLT1 were increased in all patient groups (patients with early- and late-stage RA, seropositive arthralgia and spondyloarthropathy) when compared to healthy subjects
« Half dicht, half prose gheordineert » : vers et prose de moyen français en moyen néerlandais
In both French-speaking and Dutch-speaking literary cultures of the late Middle Ages, competition between poets produced a collective poetic expertise. To what extent, then, can such competition be identified across the two cultures, in translations of verse or prosimetrum compositions from Middle French into Middle Dutch? An examination of the Dutch translations reveals that verse is both a means to knowledge and an object of knowledge, in the target culture as well as the source culture. The diversity of translations shows that verse is not only a system that translators attempt to master, but also a formal supplement in ways that are unavailable to prose
Community-based natural resource use and management of Bigodi Wetland Sanctuary, Uganda, for livelihood benefits
publisher versionConservation and sustainable management of wetlands requires participation of local stakeholders, including communities. The Bigodi Wetland is unusual because it is situated in a common property landscape but the local community has been running a successful community-based natural resource management programme (CBNRM) for the wetland for over a decade. Whilst external visitors to the wetland provide ecotourism revenues we sought to quantify community benefits through the use of wetland goods such as firewood, plant fibres, and the like, and costs associated with wild animals damaging farming activities. We interviewed 68 households living close to the wetland and valued their cash and non-cash incomes from farming and collection of non-timber forest products (NTFPs) and water. The majority of households collected a wide variety of plant and fish resources and water from the wetland for household use and livestock. Overall, 53% of total household cash and non-cash income was from collected products, mostly the wetland, 28% from arable agriculture, 12% from livestock and 7% from employment and cash transfers. Female-headed households had lower incomes than male-headed ones, and with a greater reliance on NTFPs. Annual losses due to wildlife damage were estimated at 4.2% of total gross income. Most respondents felt that the wetland was important for their livelihoods, with more than 80% identifying health, education, craft materials and firewood as key benefits. Ninety-five percent felt that the wetland was in a good condition and that most residents observed the agreed CBNRM rules regarding use of the wetland. This study confirms the success of the locally run CBNRM processes underlying the significant role that the wetland plays in local livelihoods
- …