709 research outputs found

    On helium-dominated stellar evolution: the mysterious role of the O(He)-type stars

    Get PDF
    About a quarter of all post-asymptotic giant branch (AGB) stars are hydrogen-deficient. Stellar evolutionary models explain the carbon-dominated H-deficient stars by a (very) late thermal pulse scenario where the hydrogen-rich envelope is mixed with the helium-rich intershell layer. Depending on the particular time at which the final flash occurs, the entire hydrogen envelope may be burned. In contrast, helium-dominated post-AGB stars and their evolution are yet not understood. A small group of very hot, helium-dominated stars is formed by O(He)-type stars. We performed a detailed spectral analysis of ultraviolet and optical spectra of four O(He) stars by means of state-of-the-art non-LTE model-atmosphere techniques. We determined effective temperatures, surface gravities, and the abundances of H, He, C, N, O, F, Ne, Si, P, S, Ar, and Fe. By deriving upper limits for the mass-loss rates of the O(He) stars, we found that they do not exhibit enhanced mass-loss. The comparison with evolutionary models shows that the status of the O(He) stars remains uncertain. Their abundances match predictions of a double helium white dwarf merger scenario, suggesting that they might be the progeny of the compact and of the luminous helium-rich sdO-type stars. The existence of planetary nebulae that do not show helium enrichment around every other O(He) star, precludes a merger origin for these stars. These stars must have formed in a different way, for instance via enhanced mass-loss during their post-AGB evolution or a merger within a common-envelope (CE) of a CO-WD and a red giant or AGB star. A helium-dominated stellar evolutionary sequence exists, that may be fed by different types of mergers or CE scenarios. It appears likely, that all these pass through the O(He) phase just before they become white dwarfs.Comment: 29 pages, 27 figures, accepted for publication in A&

    Simulative verification of a novel semi-active broadband energy harvester

    Get PDF
    This paper presents a semi-active broadband vibrational-energy harvesting system. Based on a non-resonant rotational generator, electronic circuitry was used to overcome the physical start-up restrictions. Due to the functional design it remains an energy harvester suitable for battery-less devices. For the first time a vibrational energy harvester is presented that allows standardization and thus higher volume production. A system layout, simulation, and measurement data will be shown

    Analysis of cool DO-type white dwarfs from the Sloan Digital Sky Survey Data Release 10

    Get PDF
    We report on the identification of 22 new cool DO-type white dwarfs (WD) detected in Data Release 10 (DR10) of the Sloan Digital Sky Survey (SDSS). Among them, we found one more member of the so-called hot-wind DO WDs, which show ultrahigh excitation absorption lines. Our non-LTE model atmosphere analyses of these objects and two not previously analyzed hot-wind DO WDs, revealed effective temperatures and gravities in the ranges Teff=45-80kK and log g= 7.50-8.75. In eight of the spectra we found traces of C (0.001-0.01, by mass). Two of these are the coolest DO WDs ever discovered that still show a considerable amount of C in their atmospheres. This is in strong contradiction with diffusion calculations, and probably, similar to what is proposed for DB WDs, a weak mass-loss is present in DO WDs. One object is the most massive DO WD discovered so far with a mass of 1.07 M_sun if it is an ONe-WD or 1.09 M_sun if it is a CO-WD. We furthermore present the mass distribution of all known hot non-DA (pre-) WDs and derive the hot DA to non-DA ratio for the SDSS DR7 spectroscopic sample. The mass distribution of DO WDs beyond the wind limit strongly deviates from the mass distribution of the objects before the wind limit. We address this phenomenon by applying different evolutionary input channels. We argue that the DO WD channel may be fed by about 13% by post-extreme-horizontal branch stars and that PG1159 stars and O(He) stars may contribute in a similar extent to the non-DA WD channel.Comment: 13 pages, accepted for publication in A&

    Phonon-Assisted Two-Photon Interference from Remote Quantum Emitters

    Get PDF
    Photonic quantum technologies are on the verge offinding applications in everyday life with quantum cryptography andquantum simulators on the horizon. Extensive research has beencarried out to identify suitable quantum emitters and single epitaxialquantum dots have emerged as near-optimal sources of bright, on-demand, highly indistinguishable single photons and entangledphoton-pairs. In order to build up quantum networks, it is essentialto interface remote quantum emitters. However, this is still anoutstanding challenge, as the quantum states of dissimilar“artificialatoms”have to be prepared on-demand with highfidelity and thegenerated photons have to be made indistinguishable in all possibledegrees of freedom. Here, we overcome this major obstacle and show an unprecedented two-photon interference (visibility of 51±5%) from remote strain-tunable GaAs quantum dots emitting on-demand photon-pairs. We achieve this result by exploiting forthefirst time the full potential of a novel phonon-assisted two-photon excitation scheme, which allows for the generation ofhighly indistinguishable (visibility of 71±9%) entangled photon-pairs (fidelity of 90±2%), enables push-button biexciton statepreparation (fidelity of 80±2%) and outperforms conventional resonant two-photon excitation schemes in terms of robustnessagainst environmental decoherence. Our results mark an important milestone for the practical realization of quantum repeatersand complex multiphoton entanglement experiments involving dissimilar artificial atom

    The rapid evolution of the exciting star of the Stingray Nebula

    Get PDF
    SAO244567, the exciting star of the Stingray nebula, is rapidly evolving. Previous analyses suggested that it has heated up from an effective temperature of about 21kK in 1971 to over 50kK in the 1990s. Canonical post-asymptotic giant branch evolution suggests a relatively high mass while previous analyses indicate a low-mass star. Fitting line profiles from static and expanding non-LTE model atmospheres to the observed UV and optical spectra, taken during 1988-2013, allowed us to study the temporal change of effective temperature, surface gravity, mass-loss rate, and terminal wind velocity. In addition, we determined the chemical composition of the atmosphere. We find that the central star has steadily increased its effective temperature from 38kK in 1988 to a peak value of 60kK in 2002. During the same time, the star was contracting, as concluded from an increase in surface gravity from log g = 4.8 to 6.0 and a drop in luminosity. Simultaneously, the mass-loss rate declined from log (dM/dt/Msun/yr)=-9.0 to -11.6 and the terminal wind velocity increased from 1800km/s to 2800km/s. Since around 2002, the star stopped heating and has cooled down again to 55kK by 2006. It has a largely solar surface composition with the exception of slightly subsolar carbon, phosphorus, and sulfur. By comparison with stellar-evolution calculations, we confirm that SAO244567 must be a low-mass star (M < 0.55 Msun). However, the slow evolution of the respective stellar evolutionary models is in strong contrast to the observed fast evolution and the young planetary nebula with a kinematical age of only about 1000 years. We speculate that the star could be a late He-shell flash object. Alternatively, it could be the outcome of close-binary evolution. Then SAO244567 would be a low-mass (0.354 Msun) helium prewhite dwarf after the common-envelope phase, during which the planetary nebula was ejected.Comment: 16 pages, 13 figures, accepted for publication in A&

    A far-UV survey of three hot, metal-polluted white dwarf stars: WD0455-282, WD0621-376, and WD2211-495

    Get PDF
    Using newly obtained high-resolution data (R1×105R\sim{1\times{10}^{5}}) from the \textit{Hubble Space Telescope}, and archival UV data from the \textit{Far Ultraviolet Spectroscopic Explorer} we have conducted a detailed UV survey of the three hot, metal-polluted white dwarfs WD0455-282, WD0621-376, and WD2211-495. Using bespoke model atmospheres we measured TeffT_{\mathrm{eff}}, log gg, and photospheric abundances for these stars. In conjunction with data from Gaia we measured masses, radii, and gravitational redshift velocities for our sample of objects. We compared the measured photospheric abundances with those predicted by radiative levitation theory, and found that the observed Si abundances in all three white dwarfs, and the observed Fe abundances in WD0621-376 and WD2211-495, were larger than those predicted by an order of magnitude. These findings imply not only an external origin for the metals, but also ongoing accretion, as the metals not supported by radiative levitation would sink on extremely short timescales. We measured the radial velocities of several absorption features along the line of sight to the three objects in our sample, allowing us to determine the velocities of the photospheric and interstellar components along the line of sight for each star. Interestingly, we made detections of circumstellar absorption along the line of sight to WD0455-282 with three velocity components. To our knowledge, this is the first such detection of multi-component circumstellar absorption along the line of sight to a white dwarf.Comment: 19 pages, 23 figures, 8 tables. Accepted for publication in the Monthly Notices of the Royal Astronomical Societ

    Multimodal hyperscanning reveals that synchrony of body and mind are distinct in mother-child dyads

    Get PDF
    Hyperscanning studies have begun to unravel the brain mechanisms underlying social interaction, indicating a functional role for interpersonal neural synchronization (INS), yet the mechanisms that drive INS are poorly understood. The current study, thus, addresses whether INS is functionally-distinct from synchrony in other systems – specifically the autonomic nervous system and motor behavior. To test this, we used concurrent functional near-infrared spectroscopy - electrocardiography recordings, while N = 34 mother-child and stranger-child dyads engaged in cooperative and competitive tasks. Only in the neural domain was a higher synchrony for mother-child compared to stranger-child dyads observed. Further, autonomic nervous system and neural synchrony were positively related during competition but not during cooperation. These results suggest that synchrony in different behavioral and biological systems may reflect distinct processes. Furthermore, they show that increased mother-child INS is unlikely to be explained solely by shared arousal and behavioral similarities, supporting recent theories that postulate that INS is higher in close relationships

    Reddening, Absorption, and Decline Rate Corrections for a Complete Sample of Type Ia Supernovae leading to a Fully Corrected Hubble Diagram to v<30,000kms-1

    Full text link
    Photometric BVI and redshift data corrected for streaming motions are compiled for 111 "Branch normal", 4 1991T-like, 7 1991bg-like, and 2 unusual SNe Ia. Color excesses E(B-V)host of normal SNe Ia, due to the absorption of the host galaxy, are derived by three independent methods leading to the intrinsic colors at maximum of (B-V)00=-0.024, and (V-I)00=-0.265 if normalized to a common decline rate of Dm_15=1.1. The strong correlation between redshift absolute magnitudes (based on Ho=60), corrected only for the extrinsic Galactic absorption, and the derived E(B-V)host leads to well determined, yet abnormal absorption-to-reddening ratios of R_BVI=3.65, 2.65, and 1.35. Comparison with the canonical Galactic values of 4.1, 3.1, 1.8 forces the conclusion that the law of interstellar absorption in the path length to the SN in the host galaxy is different from the local Galactic law. Improved correlations of the fully corrected absolute magnitudes with host galaxy type, decline rate, and intrinsic color are derived. The four peculiar 1991T-type SNe are significantly overluminous as compared to Branch-normal SNe Ia. The overluminosity of the seven 1999aa-like SNe is less pronounced. The seven 1991bg-types in the sample constitute a separate class of SNeIa, averaging in B two magnitudes fainter than the normal Ia. New Hubble diagrams in BVI are derived out to ~30,000kms-1 using the fully corrected magnitudes and velocities, corrected for streaming motions. Nine solutions for the intercept magnitudes in these diagrams show extreme stability at the 0.04 level using various subsamples of the data. The same precepts for fully correcting SN magnitudes we shall use for the luminosity recalibration of SNe Ia in the forthcoming final review of our HST Cepheid-SN experiment for the Hubble constant.Comment: 49 pages, 15 figures, 8 tables, accepted for publication in the Astrophysical Journa
    corecore