SAO244567, the exciting star of the Stingray nebula, is rapidly evolving.
Previous analyses suggested that it has heated up from an effective temperature
of about 21kK in 1971 to over 50kK in the 1990s. Canonical post-asymptotic
giant branch evolution suggests a relatively high mass while previous analyses
indicate a low-mass star. Fitting line profiles from static and expanding
non-LTE model atmospheres to the observed UV and optical spectra, taken during
1988-2013, allowed us to study the temporal change of effective temperature,
surface gravity, mass-loss rate, and terminal wind velocity. In addition, we
determined the chemical composition of the atmosphere. We find that the central
star has steadily increased its effective temperature from 38kK in 1988 to a
peak value of 60kK in 2002. During the same time, the star was contracting, as
concluded from an increase in surface gravity from log g = 4.8 to 6.0 and a
drop in luminosity. Simultaneously, the mass-loss rate declined from log
(dM/dt/Msun/yr)=-9.0 to -11.6 and the terminal wind velocity increased from
1800km/s to 2800km/s. Since around 2002, the star stopped heating and has
cooled down again to 55kK by 2006. It has a largely solar surface composition
with the exception of slightly subsolar carbon, phosphorus, and sulfur. By
comparison with stellar-evolution calculations, we confirm that SAO244567 must
be a low-mass star (M < 0.55 Msun). However, the slow evolution of the
respective stellar evolutionary models is in strong contrast to the observed
fast evolution and the young planetary nebula with a kinematical age of only
about 1000 years. We speculate that the star could be a late He-shell flash
object. Alternatively, it could be the outcome of close-binary evolution. Then
SAO244567 would be a low-mass (0.354 Msun) helium prewhite dwarf after the
common-envelope phase, during which the planetary nebula was ejected.Comment: 16 pages, 13 figures, accepted for publication in A&