57 research outputs found

    Effect of Cry1Ab Protein on Rhizobacterial Communities of Bt-Maize over a Four-Year Cultivation Period

    Get PDF
    Background: Bt-maize is a transgenic variety of maize expressing the Cry toxin from Bacillus turingiensis. The potential accumulation of the relative effect of the transgenic modification and the cry toxin on the rhizobacterial communities of Btmaize has been monitored over a period of four years. Methodology/Principal Findings: The accumulative effects of the cultivation of this transgenic plant have been monitored by means of high throughput DNA pyrosequencing of the bacterial DNA coding for the 16S rRNA hypervariable V6 region from rhizobacterial communities. The obtained sequences were subjected to taxonomic, phylogenetic and taxonomicindependent diversity studies. The results obtained were consistent, indicating that variations detected in the rhizobacterial community structure were possibly due to climatic factors rather than to the presence of the Bt-gene. No variations were observed in the diversity estimates between non-Bt and Bt-maize. Conclusions/Significance: The cultivation of Bt-maize during the four-year period did not change the maize rhizobacterial communities when compared to those of the non-Bt maize. This is the first study to be conducted with Bt-maize during such a long cultivation period and the first evaluation of rhizobacterial communities to be performed in this transgenic plant using Next Generation Sequencing

    Sympatric and Allopatric Divergence of MHC Genes in Threespine Stickleback

    Get PDF
    Parasites can strongly affect the evolution of their hosts, but their effects on host diversification are less clear. In theory, contrasting parasite communities in different foraging habitats could generate divergent selection on hosts and promote ecological speciation. Immune systems are costly to maintain, adaptable, and an important component of individual fitness. As a result, immune system genes, such as those of the Major Histocompatability Complex (MHC), can change rapidly in response to parasite-mediated selection. In threespine stickleback (Gasterosteus aculeatus), as well as in other vertebrates, MHC genes have been linked with female mating preference, suggesting that divergent selection acting on MHC genes might influence speciation. Here, we examined genetic variation at MHC Class II loci of sticklebacks from two lakes with a limnetic and benthic species pair, and two lakes with a single species. In both lakes with species pairs, limnetics and benthics differed in their composition of MHC alleles, and limnetics had fewer MHC alleles per individual than benthics. Similar to the limnetics, the allopatric population with a pelagic phenotype had few MHC alleles per individual, suggesting a correlation between MHC genotype and foraging habitat. Using a simulation model we show that the diversity and composition of MHC alleles in a sympatric species pair depends on the amount of assortative mating and on the strength of parasite-mediated selection in adjacent foraging habitats. Our results indicate parallel divergence in the number of MHC alleles between sympatric stickleback species, possibly resulting from the contrasting parasite communities in littoral and pelagic habitats of lakes

    The Effect of Feeding Bt MON810 Maize to Pigs for 110 Days on Intestinal Microbiota

    Get PDF
    Objective: To assess the effects of feeding Bt MON810 maize to pigs for 110 days on the intestinal microbiota. Methodology/Principal Findings: Forty male pigs (,40 days old) were blocked by weight and litter ancestry and assigned to one of four treatments; 1) Isogenic maize-based diet for 110 days (Isogenic); 2) Bt maize-based diet (MON810) for 110 days (Bt); 3) Isogenic maize-based diet for 30 days followed by a Bt maize-based diet for 80 days (Isogenic/Bt); 4) Bt maizebased diet for 30 days followed by an isogenic maize-based diet for 80 days (Bt/Isogenic). Enterobacteriaceae, Lactobacillus and total anaerobes were enumerated in the feces using culture-based methods on days 0, 30, 60 and 100 of the study and in ileal and cecal digesta on day 110. No differences were found between treatments for any of these counts at any time point. The relative abundance of cecal bacteria was also determined using high-throughput 16 S rRNA gene sequencing. No differences were observed in any bacterial taxa between treatments, with the exception of the genus Holdemania which was more abundant in the cecum of pigs fed the isogenic/Bt treatment compared to pigs fed the Bt treatment (0.012 vs 0.003%; P#0.05). Conclusions/Significance: Feeding pigs a Bt maize-based diet for 110 days did not affect counts of any of the culturable bacteria enumerated in the feces, ileum or cecum. Neither did it influence the composition of the cecal microbiota, with the exception of a minor increase in the genus Holdemania. As the role of Holdemania in the intestine is still under investigatio

    Scientists’ warning to humanity:microorganisms and climate change

    Get PDF
    In the Anthropocene, in which we now live, climate change is impacting most life on Earth. Microorganisms support the existence of all higher trophic life forms. To understand how humans and other life forms on Earth (including those we are yet to discover) can withstand anthropogenic climate change, it is vital to incorporate knowledge of the microbial 'unseen majority'. We must learn not just how microorganisms affect climate change (including production and consumption of greenhouse gases) but also how they will be affected by climate change and other human activities. This Consensus Statement documents the central role and global importance of microorganisms in climate change biology. It also puts humanity on notice that the impact of climate change will depend heavily on responses of microorganisms, which are essential for achieving an environmentally sustainable future

    Modularity and predicted functions of the global sponge-microbiome network

    Get PDF
    Defining the organisation of species interaction networks and unveiling the processes behind their assembly is fundamental to understanding patterns of biodiversity, community stability and ecosystem functioning. Marine sponges host complex communities of microorganisms that contribute to their health and survival, yet the mechanisms behind microbiome assembly are largely unknown. We present the global marine sponge-microbiome network and reveal a modular organisation in both community structure and function. Modules are linked by a few sponge species that share microbes with other species around the world. Further, we provide evidence that abiotic factors influence the structuring of the sponge microbiome when considering all microbes present, but biotic interactions drive the assembly of more intimately associated 'core' microorganisms. These findings suggest that both ecological and evolutionary processes are at play in host-microbe network assembly. We expect mechanisms behind microbiome assembly to be consistent across multicellular hosts throughout the tree of life

    Comparative transcriptomics analyses reveal the conservation of an ancestral infectious strategy in two bacteriophage genera.

    No full text
    International audienceAlthough the evolution of tailed bacteriophages has increasingly been better understood through comparisons of their DNA sequences, the functional consequences of this evolution on phage infectious strategies have remained unresolved. In this study, we comprehensively compared the transcriptional strategies of two related myoviruses, PAK_P3 and PAK_P4, infecting the same Pseudomonas aeruginosa host strain. Outside of the conservation of their structural clusters, their highly syntenic genomes display only limited DNA similarity. Despite this apparent divergence, we found that both viruses follow a similar infection scheme, relying on a temporal regulation of their gene expression, likely involving the use of antisense transcripts, as well as a rapid degradation of 90% of the host non-ribosomal mRNA, as previously reported for PAK_P3. However, the kinetics of the mRNA degradation is remarkably faster during PAK_P4 infection. Moreover, we found that each virus has evolved specific adaptations, as exemplified by the distinct patterns of their core genes expression as well as the specific manipulation of the expression of iron-related host genes by PAK_P4. This study enhances our understanding of the evolutionary process of virulent phages, which relies on adjusting globally conserved ancestral infection mechanisms.The ISME Journal advance online publication, 12 May 2017; doi:10.1038/ismej.2017.63
    • …
    corecore