36 research outputs found

    Population development and breeding success of Dark-bellied Brent Geese Branta b. bernicla from 1991-2011

    Get PDF
    The Dark-bellied Brent Goose Branta bernicla bernicla is the largest of the six Brent Goose populations, which collectively number around 600,000 birds globally. After a major decline to 16,500 geese in 1958, numbers recovered during the 1970s and 1980s to a peak of c. 330,000 individuals between 1992 and 1994. From 1994 onwards the population declined again to 200,000–250,000. This decline has been attributed to poor breeding, associated with faltering cycles of Siberian Brown Lemming Lemmus sibiricus (predominantly) and Palearctic Collared Lemming Dicrostonyx torquatus abundance on the breeding grounds on the Taimyr Peninsula, where lemmings are a main food resource for potential predators of goslings. Darkbellied Brent Geese only breed well in peak lemming years (Summers & Underhill 1991), and this usually occurs every three years, but the frequent failure since 1994 of lemming numbers to peak (except in 2005) has resulted in the absence of very good breeding years for the geese (Nolet et al. 2013). The mid-winter distribution has shown a marked shift towards France over the last decade. France currently supports 50% of the population in January, Great Britain 35–40%, the Netherlands 15–20%, and Germany and Denmark 2%. In spring, almost the entire population gathers in the Wadden Sea, leaving only 4% of the population in Great Britain, and virtually none in France, with the Dutch part of the Wadden Sea supporting 40–45%, the German section 45–50% and Denmark 6%

    Fatty acid profile in peri-prostatic adipose tissue and prostate cancer aggressiveness in African-Caribbean and Caucasian patients

    Get PDF
    BACKGROUND: Genetic and nutritional factors have been linked to the risk of aggressive prostate cancer (PCa). The fatty acid (FA) composition of peri-prostatic adipose tissue (PPAT), which reflects the past FA intake, is potentially involved in PCa progression. We analysed the FA composition of PPAT, in correlation with the ethno-geographical origin of the patients and markers of tumour aggressiveness. METHODS: From a cohort of 1000 men treated for PCa by radical prostatectomy, FA composition of PPAT was analysed in 156 patients (106 Caucasians and 50 African-Caribbeans), 78 with an indolent tumour (ISUP group 1 + pT2 + PSA <10 ng/mL) and 78 with an aggressive tumour (ISUP group 4-5 + pT3). The effect of FA extracted from PPAT on in-vitro migration of PCa cells DU145 was studied in 72 patients, 36 Caucasians, and 36 African-Caribbeans. RESULTS: FA composition differed according to the ethno-geographical origin. Linoleic acid, an essential n-6 FA, was 2-fold higher in African-Caribbeans compared with Caucasian patients, regardless of disease aggressiveness. In African-Caribbeans, the FA profile associated with PCa aggressiveness was characterised by low level of linoleic acid along with high levels of saturates. In Caucasians, a weak and negative association was observed between eicosapentaenoic acid level (an n-3 FA) and disease aggressiveness. In-vitro migration of PCa cells using PPAT from African-Caribbean patients was associated with lower content of linoleic acid. CONCLUSION: These results highlight an important ethno-geographical variation of PPAT, in both their FA content and association with tumour aggressiveness

    α,β-D-Constrained Nucleic Acids Are Strong Terminators of Thermostable DNA Polymerases in Polymerase Chain Reaction

    Get PDF
    (SC5′, RP) α,β-D- Constrained Nucleic Acids (CNA) are dinucleotide building blocks that can feature either B-type torsional angle values or non-canonical values, depending on their 5′C and P absolute stereochemistry. These CNA are modified neither on the nucleobase nor on the sugar structure and therefore represent a new class of nucleotide with specific chemical and structural characteristics. They promote marked bending in a single stranded DNA so as to preorganize it into a loop-like structure, and they have been shown to induce rigidity within oligonucleotides. Following their synthesis, studies performed on CNA have only focused on the constraints that this family of nucleotides introduced into DNA. On the assumption that bending in a DNA template may produce a terminator structure, we investigated whether CNA could be used as a new strong terminator of polymerization in PCR. We therefore assessed the efficiency of CNA as a terminator in PCR, using triethylene glycol phosphate units as a control. Analyses were performed by denaturing gel electrophoresis and several PCR products were further analysed by sequencing. The results showed that the incorporation of only one CNA was always skipped by the polymerases tested. On the other hand, two CNA units always stopped proofreading polymerases, such as Pfu DNA polymerase, as expected for a strong replication terminator. Non-proofreading enzymes, e.g. Taq DNA polymerase, did not recognize this modification as a strong terminator although it was predominantly stopped by this structure. In conclusion, this first functional use of CNA units shows that these modified nucleotides can be used as novel polymerization terminators of proofreading polymerases. Furthermore, our results lead us to propose that CNA and their derivatives could be useful tools for investigating the behaviour of different classes of polymerases

    Cyanobacterial lipopolysaccharides and human health – a review

    Get PDF
    Cyanobacterial lipopolysaccharide/s (LPS) are frequently cited in the cyanobacteria literature as toxins responsible for a variety of heath effects in humans, from skin rashes to gastrointestinal, respiratory and allergic reactions. The attribution of toxic properties to cyanobacterial LPS dates from the 1970s, when it was thought that lipid A, the toxic moiety of LPS, was structurally and functionally conserved across all Gram-negative bacteria. However, more recent research has shown that this is not the case, and lipid A structures are now known to be very different, expressing properties ranging from LPS agonists, through weak endotoxicity to LPS antagonists. Although cyanobacterial LPS is widely cited as a putative toxin, most of the small number of formal research reports describe cyanobacterial LPS as weakly toxic compared to LPS from the Enterobacteriaceae. We systematically reviewed the literature on cyanobacterial LPS, and also examined the much lager body of literature relating to heterotrophic bacterial LPS and the atypical lipid A structures of some photosynthetic bacteria. While the literature on the biological activity of heterotrophic bacterial LPS is overwhelmingly large and therefore difficult to review for the purposes of exclusion, we were unable to find a convincing body of evidence to suggest that heterotrophic bacterial LPS, in the absence of other virulence factors, is responsible for acute gastrointestinal, dermatological or allergic reactions via natural exposure routes in humans. There is a danger that initial speculation about cyanobacterial LPS may evolve into orthodoxy without basis in research findings. No cyanobacterial lipid A structures have been described and published to date, so a recommendation is made that cyanobacteriologists should not continue to attribute such a diverse range of clinical symptoms to cyanobacterial LPS without research confirmation

    Miocene Subsidence and Surface Uplift of Southernmost Tibet Induced by Indian Subduction Dynamics

    No full text
    International audienceThe Indus-Yarlung suture of southernmost Tibet marks the initial collisional zone, the ongoing India-Asia collision, and yet more than~30 million years after the onset of collision, a thick detrital sedimentary unit was deposited just north of the suture: the Kailas Formation. The mechanism permitting subsidence of the deep intracontinental Kailas basin in a compressional tectonic regime remains uncertain. We present new apatite (16-11 Ma) and zircon (24-19 Ma) fission track (AFT and ZFT) ages from the Gangdese batholith just north of the Kailas basin. ZFT analysis of modern-river sand from the northern Gangdese magmatic arc indicates an exhumation at 27.3 ± 1.3 Ma. Thermal modeling indicates that the batholith experienced reheating between 28 and 20 Ma, coeval with deposition in the Kailas basin (between 26 and 21 Ma), followed by overall rapid cooling between 20 and 17 Ma. We interpret this thermal history as a phase of regional Oligocene-Miocene sedimentary burial followed by exhumation. By modeling mantle dynamics in the geodynamic framework of the India-Asia collision, we show that transient dynamic topography over the relative southward folding of the Indian slab is consistent with burial and exhumation of the Gangdese magmatic arc during Oligocene-Miocene time. The northward migration of the Indian continent relative to its own stati onary slab created a wave of dynamic topography that caused subsidence in the overriding plate north of the Himalaya, followed by a phase of surface uplift since~27 Ma of the northern Gangdese magmatic arc. During latest Oligocene-early Miocene time, the dynamic deflection center was in the Kailas area, and it progressively relocated southward to its present position at the Ganges basin
    corecore