302 research outputs found

    TEM Characterization of Solar Wind Effects on Genesis Mission Silicon Collectors

    Get PDF
    The Genesis Discovery Mission passively allowed solar wind (SW) to implant into substrates during exposure times up to ~853 days from 2001 to 2004. The spacecraft then returned the SW to Earth for analysis. Substrates included semiconductor wafers (silicon, sapphire, and germanium), as well as a number of thin films supported by either silicon or sapphire wafers. During flight, subsets of the SW collectors were exposed to one of 4 SW regimes: bulk solar wind, coronal hole solar wind (CH, high speed), interstream solar wind (IS, low speed) or coronal mass ejections (CMEs). Each SW regime had a different composition and range of ion speeds and, during their collection, uniquely changed their host SW collector. This study focuses on bulk vs IS SW effects on CZ silicon

    Development of Chemical and Mechanical Cleaning Procedures for Genesis Solar Wind Samples

    Get PDF
    The Genesis mission was the only mission returning pristine solar material to Earth since the Apollo program. Unfortunately, the return of the spacecraft on September 8, 2004 resulted in a crash landing shattering the solar wind collectors into smaller fragments and exposing them to desert soil and other debris. Thorough surface cleaning is required for almost all fragments to allow for subsequent analysis of solar wind material embedded within. However, each collector fragment calls for an individual cleaning approach, as contamination not only varies by collector material but also by sample itself

    Determining the Elemental and Isotopic Composition of the preSolar Nebula from Genesis Data Analysis: The Case of Oxygen

    Get PDF
    We compare element and isotopic fractionations measured in solar wind samples collected by NASA's Genesis mission with those predicted from models incorporating both the ponderomotive force in the chromosphere and conservation of the first adiabatic invariant in the low corona. Generally good agreement is found, suggesting that these factors are consistent with the process of solar wind fractionation. Based on bulk wind measurements, we also consider in more detail the isotopic and elemental abundances of O. We find mild support for an O abundance in the range 8.75 - 8.83, with a value as low as 8.69 disfavored. A stronger conclusion must await solar wind regime specific measurements from the Genesis samples.Comment: 6 pages, accepted by Astrophysical Journal Letter

    Maternal stress during pregnancy and neurodevelopmental outcomes of children during the first 2 years of life

    Get PDF
    AIM: A growing body of literature documents associations between maternal stress in pregnancy and child development, but findings across studies are often inconsistent. The aim of this study was to estimate the association between exposure to different kinds of prenatal stress and child psychomotor development. METHODS: The study population consisted of 372 mother-child pairs from Polish Mother and Child Cohort. The analysis was restricted to the women who worked at least 1 month during pregnancy period. Maternal psychological stress during pregnancy was assessed based on: the Subjective Work Characteristics Questionnaire, Perceived Stress Scale and Social Readjustment Rating Scale. The level of satisfaction with family functioning and support was evaluated by APGAR Family Scale. Child psychomotor development was assessed at the 12th and 24th months of age by Bayley Scales of Infant and Toddler Development. RESULTS: Negative impact on child cognitive development at the age of two was observed for the Perceived Stress Scale (β = -0.8; P = 0.01) and the Social Readjustment Rating Scale (β = -0.4; P = 0.03) after adjusting for the variety of confounders. Occupational stress, as well as satisfaction with family functioning, was not significantly associated with child psychomotor development (P > 0.05). CONCLUSIONS: The study supports the findings that prenatal exposure to maternal stress is significantly associated with decreased child cognitive functions. In order to further understand and quantify the effects of prenatal stress on child neurodevelopment further studies are needed. This will be important for developing interventions that provide more assistance to pregnant women, including emotional support or help to manage psychological stress

    Genesis Solar Wind Sample 61422: Experiment in Variation of Sequence of Cleaning Solvent for Removing Carbon-Bearing Contamination

    Get PDF
    The recovered Genesis collector fragments are heavily contaminated with crash-derived particulate debris. However, megasonic treatment with ultra-pure-water (UPW; resistivity (is) greater than18 meg-ohm-cm) removes essentially all particulate contamination greater than 5 microns in size [e.g.1] and is thus of considerable importance. Optical imaging of Si sample 60336 revealed the presence of a large C-rich particle after UPW treatment that was not present prior to UPW. Such handling contamination is occasionally observed, but such contaminants are normally easily removed by UPW cleaning. The 60336 particle was exceptional in that, surprisingly, it was not removed by additional UPW or by hot xylene or by aqua regia treatment. It was eventually removed by treatment with NH3-H2O2. Our best interpretation of the origin of the 60336 particle was that it was adhesive from the Post-It notes used to stabilize samples for transport from Utah after the hard landing. It is possible that the insoluble nature of the 60336 particle comes from interaction of the Post-It adhesive with UPW. An occasional bit of Post-It adhesive is not a major concern, but C particulate contamination also occurs from the heat shield of the Sample Return Capsule (SRC) and this is mixed with inorganic contamination from the SRC and the Utah landing site. If UPW exposure also produced an insoluble residue from SRC C, this would be a major problem in chemical treatments to produce clean surfaces for analysis. This paper reports experiments to test whether particulate contamination was removed more easily if UPW treatment was not used

    Genesis Solar Wind Collector Cleaning Assessment: Update on 60336 Sample Case Study

    Get PDF
    To maximize the scientific return of Genesis Solar Wind return mission it is necessary to characterize and remove a crash-derived particle and thin film surface contamination. A small subset of Genesis mission collector fragments are being subjected to extensive study via various techniques. Here we present an update on the sample 60336, a Czochralski silicon (Si-CZ) based wafer from the bulk array (B/C). This sample has undergone multiple cleaning steps (see the table below): UPW spin wash, aggressive chemical cleanings (including aqua regia, hot xylene and RCA1), as well as optical and chemical (EDS, ToF-SIMS) imaging. Contamination appeared on the surface of 60336 after the initial 2007 UPW cleaning. Aqua regia and hot xylene treatment (8/13/2013) did little to remove contaminants. The sample was UPW cleaned for the third time and imaged (9/16/13). The UPW removed the dark stains that were visible on the sample. However, some features, like "the Flounder" (a large, 100 micron feature in Fig. 1b) appeared largely intact, resisting all previous cleaning efforts. These features were likely from mobilized adhesive, derived from the Post-It notes used to stabilize samples for transport from Utah after the hard landing. To remove this contamination, an RCA step 1 organic cleaning (RCA1) was employed. Although we are still uncertain on the nature of the Flounder and why it is resistant to UPW and aqua regia/hot xylene treatment, we have found RCA1 to be suitable for its removal. It is likely that the glue from sticky pads used during collector recovery may have been a source for resistant organic contamination [9]; however [8] shows that UPW reaction with crash-derived organic contamination does not make particle removal more difficult

    Finite-size scaling in silver nanowire films: design considerations for practical devices

    Get PDF
    We report the first application of finite-size scaling theory to nanostructured percolating networks, using silver nanowire (AgNW) films as a model system for experiment and simulation. AgNWs have been shown to be a prime candidate for replacing Indium Tin Oxide (ITO) in applications such as capacitive touch sensing. While their performance as large area films is well-studied, the production of working devices involves patterning of the films to produce isolated electrode structures, which exhibit finite-size scaling when these features are sufficiently small. We demonstrate a generalised method for understanding this behaviour in practical rod percolation systems, such as AgNW films, and study the effect of systematic variation of the length distribution of the percolating material. We derive a design rule for the minimum viable feature size in a device pattern, relating it to parameters which can be derived from a transmittance-sheet resistance data series for the material in question. This understanding has direct implications for the industrial adoption of silver nanowire electrodes in applications where small features are required including single-layer capacitive touch sensors, LCD and OLED display panels

    Genesis Solar Wind Collector Cleaning Assessment: 60366 Sample Case Study

    Get PDF
    In order to recognize, localize, characterize and remove particle and thin film surface contamination, a small subset of Genesis mission collector fragments are being subjected to extensive study via various techniques [1-5]. Here we present preliminary results for sample 60336, a Czochralski silicon (Si-CZ) based wafer from the bulk array (B/C)

    Ultrasensitive strain gauges enabled by graphene-stabilized silicone emulsions

    Get PDF
    Here, an approach is presented to incorporate graphene nanosheets into a silicone rubber matrix via solid stabilization of oil‐in‐water emulsions. These emulsions can be cured into discrete, graphene‐coated silicone balls or continuous, elastomeric films by controlling the degree of coalescence. The electromechanical properties of the resulting composites as a function of interdiffusion time and graphene loading level are characterized. With conductivities approaching 1 S m−1, elongation to break up to 160%, and a gauge factor of ≈20 in the low‐strain linear regime, small strains such as pulse can be accurately measured. At higher strains, the electromechanical response exhibits a robust exponential dependence, allowing accurate readout for higher strain movements such as chest motion and joint bending. The exponential gauge factor is found to be ≈20, independent of loading level and valid up to 80% strain; this consistent performance is due to the emulsion‐templated microstructure of the composites. The robust behavior may facilitate high‐strain sensing in the nonlinear regime using nanocomposites, where relative resistance change values in excess of 107 enable highly accurate bodily motion monitoring

    Mechanochromic and thermochromic sensors based on graphene infused polymer opals

    Get PDF
    High quality opal‐like photonic crystals containing graphene are fabricated using evaporation‐driven self‐assembly of soft polymer colloids. A miniscule amount of pristine graphene within a colloidal crystal lattice results in the formation of colloidal crystals with a strong angle‐dependent structural color and a stop band that can be reversibly shifted across the visible spectrum. The crystals can be mechanically deformed or can reversibly change color as a function of their temperature, hence their sensitive mechanochromic and thermochromic response make them attractive candidates for a wide range of visual sensing applications. In particular, it is shown that the crystals are excellent candidates for visual strain sensors or integrated time‐temperature indicators which act over large temperature windows. Given the versatility of these crystals, this method represents a simple, inexpensive, and scalable approach to produce multifunctional graphene infused synthetic opals and opens up exciting applications for novel solution‐processable nanomaterial based photonics
    corecore