87 research outputs found

    Forgetting of emotional information is hard: an fMRI study of directed forgetting

    Get PDF
    Strong evidence suggests that memory for emotional information is much better than for neutral one. Thus, one may expect that forgetting of emotional information is difficult and requires considerable effort. The aim of this item-method directed forgetting functional magnetic resonance imaging study was to investigate this hypothesis both at behavioral and neural levels. Directed forgetting effects were observed for both neutral and emotionally negative International Affective Picture System images. Moreover, recognition rate of negative to-be-forgotten images was higher than in case of neutral ones. In the study phase, intention to forget and successful forgetting of emotionally negative images were associated with widespread activations extending from the anterior to posterior regions mainly in the right hemisphere, whereas in the case of neutral images, they were associated with just one cluster of activation in the right lingual gyrus. Therefore, forgetting of emotional information seems to be a demanding process that strongly activates a distributed neural network in the right hemisphere. In the test phase, in turn, successfully forgotten images--either neutral or emotionally negative--were associated with virtually no activation, even at the lowered P value threshold. These results suggest that intentional inhibition during encoding may be an efficient strategy to cope with emotionally negative memories

    Neutral pathways and heat flux widths in vertical- and horizontal-target EDGE2D-EIRENE simulations of JET

    Get PDF
    This paper further analyses the EDGE2D-EIRENE simulations presented by Chankin et al (2017 Nucl. Mater. Energy 12 273), of L-mode JET plasmas in vertical-vertical (VV) and Vertical-horizontal (VH) divertor configurations. As expected, the simulated outer divertor ionisation source peaks near the separatrix in VV and radially further out in VH. We identify the reflections of recycled neutrals from lower divertor tiles as the primary mechanism by which ionisation is concentrated on the outer divertor separatrix in the VV configuration. These lower tile reflection pathways (of neutrals from the outer divertor, and to an even greater extent from the inner divertor) dominate the outer divertor separatrix ionisation. In contrast, the lower-tile-reflection pathways are much weaker in the VH simulation and its outer divertor ionisation is dominated by neutrals which do not reflect from any surfaces. Interestingly, these differences in neutral pathways give rise to strong differences in the heat flux density width λq at the outer divertor entrance: λq = 3.2 mm in VH compared to λq = 11.8 mm in VV. In VH, a narrow channel exists in the near scrape-off-layer (SOL) where the convected heat flux, driven by strong Er × B flow and thermoelectric current, dominates over the conducted heat flux. The width of this channel sets λq and is determined by the radial distance between the separatrix and the ionisation peak in the outer divertor

    Observations and modelling of ion cyclotron emission observed in JET plasmas using a sub-harmonic arc detection system during ion cyclotron resonance heating

    Get PDF
    Peer reviewe

    Investigation into the formation of the scrape-off layer density shoulder in JET ITER-like wall L-mode and H-mode plasmas

    Get PDF
    The low temperature boundary layer plasma (Scrape-Off-Layer or SOL) between the hot core and the surrounding vessel determines the level of power-loading, erosion and implantation of material surfaces, and thus the viability of tokamak-based fusion as an energy source. This study explores mechanisms affecting the formation of flattened density profiles, so-called ‘density shoulders’, in the low-field side (LFS) SOL, which modify ion and neutral fluxes to surfaces – and subsequent erosion. There is evidence against local enhancement of ionization inducing shoulder formation. We find that increases in SOL parallel resistivity, Λdiv (=[L||νei Ωi ]/cs Ωe), postulated to lead to shoulder growth through changes in SOL turbulence characteristics, correlates with increases in upstream SOL shoulder amplitude, As only under a subset of conditions (D2-fuelled L-mode density scans with outer strike point on the horizontal target). Λdiv fails to correlate with As for cases of N2 seeding or during sweeping of the strike point across the horizontal target. The limited correlation of Λdiv with As was also found for H-mode discharges. Thus, while Λdiv above a threshold of ~1 may be necessary for shoulder formation and/or growth, another shoulder mechanism is required. More significantly we find that in contrast to parallel resistivity, outer divertor recycling as quantified by the total outer divertor Balmer Dα emission, I-Dα, does scale with shoulder amplitude where Λdiv does and even where Λdiv fails. Divertor recycling could lead to SOL density shoulder formation through: a) reducing the parallel to the field flow (loss) of ions out of the SOL to the divertor; and b) changes in radial electric fields which lead to ExB poloidal flows as well as potentially affecting the SOL turbulence birth characteristics. Thus changes in divertor recycling may be the sole process in bringing about SOL density shoulders or in tandem with parallel resistivity

    Overview of the JET results in support to ITER

    Get PDF

    How multiple repetitions influence the processing of self-, famous and unknown names and faces: an ERP study.

    No full text
    Because we live in an extremely complex social environment, people require the ability to memorize hundreds or thousands of social stimuli. The aim of this study was to investigate the effect of multiple repetitions on the processing of names and faces varying in terms of pre-experimental familiarity. We measured both behavioral and electrophysiological responses to self-, famous and unknown names and faces in three phases of the experiment (in every phase, each type of stimuli was repeated a pre-determined number of times). We found that the negative brain potential in posterior scalp sites observed approximately 170 ms after the stimulus onset (N170) was insensitive to pre-experimental familiarity but showed slight enhancement with each repetition. The negative wave in the inferior-temporal regions observed at approximately 250 ms (N250) was affected by both pre-experimental (famous>unknown) and intra-experimental familiarity (the more repetitions, the larger N250). In addition, N170 and N250 for names were larger in the left inferior-temporal region, whereas right-hemispheric or bilateral patterns of activity for faces were observed. The subsequent presentations of famous and unknown names and faces were also associated with higher amplitudes of the positive waveform in the central-parietal sites analyzed in the 320-900 ms time-window (P300). In contrast, P300 remained unchanged after the subsequent presentations of self-name and self-face. Moreover, the P300 for unknown faces grew more quickly than for unknown names. The latter suggests that the process of learning faces is more effective than learning names, possibly because faces carry more semantic information

    Brain dynamics of (a)typical reading development—a review of longitudinal studies

    No full text
    Literacy development is a process rather than a single event and thus should be studied at multiple time points. A longitudinal design employing neuroimaging methods offers the possibility to identify neural changes associated with reading development, and to reveal early markers of dyslexia. The core of this review is a summary of findings from longitudinal neuroimaging studies on typical and atypical reading development. Studies focused on the prediction of reading gains with a single neuroimaging time point complement this review. Evidence from structural studies suggests that reading development results in increased structural integrity and functional specialization of left-hemispheric language areas. Compromised integrity of some of these tracts in children at risk for dyslexia might be compensated by higher anatomical connectivity in the homologous right hemisphere tracts. Regarding function, activation in phonological and audiovisual integration areas and growing sensitivity to print in the ventral occipito-temporal cortex (vOT) seem to be relevant neurodevelopmental markers of successful reading acquisition. Atypical vOT responses at the beginning of reading training and infant auditory brain potentials have been proposed as neuroimaging predictors of dyslexia that can complement behavioral measures. Besides these insights, longitudinal neuroimaging studies on reading and dyslexia are still relatively scarce and small sample sizes raise legitimate concerns about the reliability of the results. This review discusses the challenges of these studies and provides recommendations to improve this research area. Future longitudinal research with larger sample sizes are needed to improve our knowledge of typical and atypical reading neurodevelopment.ISSN:2056-793
    corecore