407 research outputs found

    Tectonic structure of the convergent Pacific margin offshore Costa Rica from multichannel seismic reflection data

    Get PDF
    The Middle America Trench between the Cocos Ridge and a well-studied corridor off the Nicoya Peninsula has a more varied morphology and structure than previously reported. The morphological positive features on the lower plate significantly affect the upper plate structure. The Cocos Ridge has uplifted the margin opposite the Osa Peninsula. Northwest of Cocos Ridge, numerous seamounts on the oceanic crust sculptured the margin as they subducted. A seamount and a huge slump in the trench axis that currently block lateral sediment transport affect the sediment currently accreted and subducted. The greater portion of the trench sediment is subducted beneath a lower slope accretionary mass. Beneath the middle and upper slope is a margin wedge consisting of a high-velocity rock with few internal reflections. Its upper surface has a nondirectional random relief commonly 500 m high in the middle slope area. Overlying this surface is a low-velocity cover of slope sediment which shows little transgressive stratigraphy and can be traced landward into an inferred Eocene section beneath the shelf. The shelf basement is composed of Nicoya complex (ophiolite) with the same acoustic velocity, similar structure, and no apparent dividing geologic boundary with the margin wedge. We favor a seaward continuation of the Nicoya complex to the middle slope and emphasize the evidence for a non-steady state Tertiary tectonic history

    Hydrogeological system of erosional convergent margins and its influence on tectonics and interplate seismogenesis

    Get PDF
    [1] Fluid distribution in convergent margins is by most accounts closely related to tectonics. This association has been widely studied at accretionary prisms, but at half of the Earth's convergent margins, tectonic erosion grinds down overriding plates, and here fluid distribution and its relation to tectonics remain speculative. Here we present a new conceptual model for the hydrological system of erosional convergent margins. The model is based largely on new data and recently published observations from along the Middle America Trench offshore Nicaragua and Costa Rica, and it is consistent with observations from other erosional margins. The observations indicate that erosional margins possess previously unrecognized distinct hydrogeological systems: Most fluid contained in the sediment pores and liberated by early dehydration reactions drains from the plate boundary through a fractured upper plate to seep at the seafloor across the slope, rather than migrating along the décollement toward the deformation front as described for accretionary prisms. The observations indicate that the relative fluid abundance across the plate-boundary fault zone and fluid migration influence long-term tectonics and the transition from aseismic to seismogenic behavior. The segment of the plate boundary where fluid appears to be more abundant corresponds to the locus of long-term tectonic erosion, where tectonic thinning of the overriding plate causes subsidence and the formation of the continental slope. This correspondence between observations indicates that tectonic erosion is possibly linked to the migration of overpressured fluids into the overriding plate. The presence of overpressured fluids at the plate boundary is compatible with the highest flow rates estimated at slope seeps. The change from aseismic to seismogenic behavior along the plate boundary of the erosional margin begins where the amount of fluid at the fault declines with depth, indicating a control on interplate earthquakes. A previously described similar observation along accreting plate boundaries strongly indicates that fluid abundance exerts a first-order control on interplate seismogenesis at all types of subduction zones. We hypothesize that fluid depletion with depth increases grain-to-grain contact, increasing effective stress on the fault, and modifies fault zone architecture from a thick fault zone to a narrower zone of localized slip

    PACOMAR 91/92 - Fahrtbericht SONNE 76 [SO76], 20. Dezember 1991 bis 25. Januar 1992

    Get PDF
    Das PACOMAR Projekt (PAcific COntinental MARgins) ist ein gemeinsames Vorhaben von deutschen und costaricanischen Forschungseinrichtungen. Es wird hauptsächlich unterstützt vom Bundesministerium für Forschung und Technologie (BMFT) in Form von Zuwendungen an das GEOMAR-Forschungszentrum für marine Geowissenschaften, an das Geologisch-Paläontologische Institut (GPI) der Christian-Aibrechts-Universität zu Kiel sowie an die Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) in Hannover. Auf Seiten Costa Ricas wird das Projekt durch Kooperation mit der costaricanischen Elektrizitätsgesellschaft (ICE), dem Geologischen Institut an der Universität Costa Rica und der costaricanischen Erdölgesellschaft (RECOPE) unterstützt. Dieses Vorhaben befaßt sich mit der Untersuchung von katastrophalen Naturereignissen, wie Erdbeben oder durch sie erzeugte Flutwellen (Tsunamis), und grundlegenden vulkanischen Prozessen. In diesem Fahrtbericht sind die ersten Ergebnisse der Forschungsfahrt S0-76 mit dem F/S Sonne vom 20. Dezember 1991 bis zum 25. Januar 1992 zusammengefaßt. Diese Ergebnisse sowie anschließende Laboruntersuchungen und Auswertungen an Land bilden die Grundlage für die Pla-nungen und Vorbereitungen einer zweiten Fahrt mit dem gleichen Forschungsschiff, S0-81, im August und September 1992

    The semianalytical cloud retrieval algorithm for SCIAMACHY II. The application to MERIS and SCIAMACHY data

    Get PDF
    International audienceThe SemiAnalytical CloUd Retrieval Algorithm (SACURA) is applied to the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) data. In particular, we derive simultaneously cloud optical thickness (COT) and cloud top height (CTH), using SCIAMACHY measurements in the visible (442 nm, COT) and in the oxygen A-band (755?775 nm, CTH). Some of the results obtained are compared with those derived from the Medium Resolution Imaging Spectrometer (MERIS), which has better spatial resolution and observes almost the same scene as SCIAMACHY. The same cloud algorithm is applied to both MERIS and SCIAMACHY data. In addition, we perform the vicarious calibration of SCIAMACHY at the wavelength 442 nm, using MERIS measurements at the same wavelength. Differences in the retrieved COT for the same cloud field obtained using MERIS and SCIAMACHY measurements are discussed

    Interpretation of Seismic-Reflection Data of the Middle America Trench offshore Guatemala

    Get PDF
    A geophysical and geological survey conducted over the landward slope of the Middle America Trench offshore Guatemala, together with published well information from the outer shelf and Leg 67 drilling results from the toe of the slope indicate that imbricate slices of oceanic crust were emplaced in the landward slope offshore Guatemala in the Paleocene or early Eocene. Since that time, sediment apparently has accumulated on the landward slope primarily as a sediment apron blanketing an older, tectonically deformed prism of sediments and crustal slices. There is little or no evidence for continued tectonic accretion seaward of the volcanic arc during the late Tertiary. Seismic reflection and refraction surveys have revealed landward-dipping reflections that are associated with high compressional wave velocities, large magnetic anomalies, and basic-ultrabasic rock. Multifold seismic reflection data reveal that the edge of the continental shelf is a structural high of Cretaceous and Paleocene rock against which Eocene and younger sediments of the shelf basin onlap and pinch out. The upper part of the continental slope is covered in most places by a 0.5- to 1.0-km-thick sediment apron with seismic velocities of 1.8 to 2.6 km/s. The base of the sediment apron commonly coincides with the base of a gas hydrate zone where water is 1500 to 2300 meters deep. Immediately beneath the sediment apron an irregular surface is the top of an interval with velocities greater than 4 km/s. Within this interval, landward-dipping reflections are traced to about 6 km below sea level. These reflections coincide with the top of seismic units having oceanic crust velocities and thicknesses. The sediment apron pinches out on the lower continental slope where refraction results indicate only a few hundred meters of 2.5-km/s material lying over about a kilometer of 3.0-km/s sediment. Between the 3.0-km/s sediment and a landward continuation of ocean crust, an interval of 4.1- to 4.7-km/s material occurs that thins seaward. Near the interface between the 4 +-km/s material and oceanic crust with velocities of 6.5 to 6.8 km/s, reflection records indicate a landward-dipping horizon that can be followed about 30 km landward from the Trench axis. Coring on the continental slope returned gravels of unweathered metamorphosed basalt, serpentine, and chert, unlike rock generally found onshore in Guatemalan drainage basins feeding the Pacific coast. These gravels, which were probably derived from local subsea outcrops, are similar to lithologies found on the Nicoya Peninsula farther south. A canyon cut in the outer continental shelf and upper continental slope may be associated with faulting, as indicated by an offset of linear magnetic anomalies at the shelf edge. In a general way our observations are consistent with previous suggestions that slices of rock, some of which may have oceanic crustal lithologies, are imbedded in the upper slope. However, the reflection data collected for the Deep Sea Drilling Project site survey do not show the many concave upward landward-dipping reflections that have been reported from other areas offshore Guatemala. The lower slope is probably a tectonically deformed and consolidated sediment wedge overlying oceanic crust, but it is not clear that it is organized into a series of landward thinning wedges. The structures within the landward slope may have originated during the late Paleocene to early Eocene tectonic event and may not be the result of an ongoing steady-state process of sediment accretion by sediment offscraping at the toe of the slope or by underplating of sediment at the base of the sediment wedge beneath the continental slope and shelf

    Validation of SCIAMACHY top-of-atmosphere reflectance for aerosol remote sensing using MERIS L1 data

    Get PDF
    Aerosol remote sensing is very much dependent on the accurate knowledge of the top-of-atmosphere (TOA) reflectance measured by a particular instrument. The status of the calibration of such an instrument is reflected in the quality of the aerosol retrieval. Current data of the SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) instrument (operated with the data processor version 5 and earlier) give too small values of the TOA reflectance, compared e.g. to data from MERIS (Medium Resolution Imaging Spectrometer), both operating on ENVISAT (ENVIronmental SATellite). This effect causes retrievals of wrong aerosol optical thickness and disables the processing of aerosol parameters. <br><br> From an inter-comparison of MERIS and SCIAMACHY TOA reflectance, for collocated scenes correction factors are derived to improve the insufficient SCIAMACHY L1 data calibration for data obtained with the processor 5 for the purpose of aerosol remote sensing. The corrected reflectance has been used for tests of remote sensing of the aerosol optical thickness by the BAER (Bremen AErosol Retrieval) approach using SCIAMACHY data

    The Sail-Backed Reptile Ctenosauriscus from the Latest Early Triassic of Germany and the Timing and Biogeography of the Early Archosaur Radiation

    Get PDF
    Background Archosaurs (birds, crocodilians and their extinct relatives including dinosaurs) dominated Mesozoic continental ecosystems from the Late Triassic onwards, and still form a major component of modern ecosystems (>10,000 species). The earliest diverse archosaur faunal assemblages are known from the Middle Triassic (c. 244 Ma), implying that the archosaur radiation began in the Early Triassic (252.3–247.2 Ma). Understanding of this radiation is currently limited by the poor early fossil record of the group in terms of skeletal remains. Methodology/Principal Findings We redescribe the anatomy and stratigraphic position of the type specimen of Ctenosauriscus koeneni (Huene), a sail-backed reptile from the Early Triassic (late Olenekian) Solling Formation of northern Germany that potentially represents the oldest known archosaur. We critically discuss previous biomechanical work on the ‘sail’ of Ctenosauriscus, which is formed by a series of elongated neural spines. In addition, we describe Ctenosauriscus-like postcranial material from the earliest Middle Triassic (early Anisian) Röt Formation of Waldhaus, southwestern Germany. Finally, we review the spatial and temporal distribution of the earliest archosaur fossils and their implications for understanding the dynamics of the archosaur radiation. Conclusions/Significance Comprehensive numerical phylogenetic analyses demonstrate that both Ctenosauriscus and the Waldhaus taxon are members of a monophyletic grouping of poposauroid archosaurs, Ctenosauriscidae, characterised by greatly elongated neural spines in the posterior cervical to anterior caudal vertebrae. The earliest archosaurs, including Ctenosauriscus, appear in the body fossil record just prior to the Olenekian/Anisian boundary (c. 248 Ma), less than 5 million years after the Permian–Triassic mass extinction. These earliest archosaur assemblages are dominated by ctenosauriscids, which were broadly distributed across northern Pangea and which appear to have been the first global radiation of archosaurs

    Hochschulisches Lernen – eine analytische Perspektive

    Get PDF
    Dieser Beitrag betrachtet hochschulisches Lernen unter einer analytischen Perspektive: Danach artikuliert sich hochschulisches Lernen im institutionellen Kontext der Hochschule mit ihren studiengangstrukturellen Rahmenbedingungen in einer je spezifischen, dabei stets kontingenten und polymorphen Koppelung zwischen Wissenschaft als Ort der Wissensproduktion einerseits und Studium als Ort der Erschliesung von Sinn- und Handlungsressourcen andererseits. Hochschulisches Lernen lasst sich als Moglichkeitsraum von Figurationen dieser Bezugnahmen rekonstruieren. Die Analyse des Lernens an Hochschulen erschliest auserdem Forschungsperspektiven einer bildungswissenschaftlichen Hochschulforschung und einer theoretischen Hochschuldidaktik, zu denen die Erwachsenenbildungswissenschaft substanzielle Beitrage liefern kann
    • …
    corecore