930 research outputs found

    White dwarfs stripped by massive black holes: sources of coincident gravitational and electromagnetic radiation

    Full text link
    White dwarfs inspiraling into black holes of mass \MBH\simgt 10^5M_\odot are detectable sources of gravitational waves in the LISA band. In many of these events, the white dwarf begins to lose mass during the main observational phase of the inspiral. The mass loss starts gently and can last for thousands of orbits. The white dwarf matter overflows the Roche lobe through the L1L_1 point at each pericenter passage and the mass loss repeats periodically. The process occurs very close to the black hole and the released gas can accrete, creating a bright source of radiation with luminosity close to the Eddington limit, L1043L\sim 10^{43}~erg~s1^{-1}. This class of inspirals offers a promising scenario for dual detections of gravitational waves and electromagnetic radiation.Comment: 5 pages, 3 figures. Minor changes. Accepted in MNRAS Letters on August 6 201

    Extreme mass ratio inspiral rates: dependence on the massive black hole mass

    Full text link
    We study the rate at which stars spiral into a massive black hole (MBH) due to the emission of gravitational waves (GWs), as a function of the mass M of the MBH. In the context of our model, it is shown analytically that the rate approximately depends on the MBH mass as M^{-1/4}. Numerical simulations confirm this result, and show that for all MBH masses, the event rate is highest for stellar black holes, followed by white dwarfs, and lowest for neutron stars. The Laser Interferometer Space Antenna (LISA) is expected to see hundreds of these extreme mass ratio inspirals per year. Since the event rate derived here formally diverges as M->0, the model presented here cannot hold for MBHs of masses that are too low, and we discuss what the limitations of the model are.Comment: Accepted to CQG, special LISA issu

    Towards adiabatic waveforms for inspiral into Kerr black holes: I. A new model of the source for the time domain perturbation equation

    Full text link
    We revisit the problem of the emission of gravitational waves from a test mass orbiting and thus perturbing a Kerr black hole. The source term of the Teukolsky perturbation equation contains a Dirac delta function which represents a point particle. We present a technique to effectively model the delta function and its derivatives using as few as four points on a numerical grid. The source term is then incorporated into a code that evolves the Teukolsky equation in the time domain as a (2+1) dimensional PDE. The waveforms and energy fluxes are extracted far from the black hole. Our comparisons with earlier work show an order of magnitude gain in performance (speed) and numerical errors less than 1% for a large fraction of parameter space. As a first application of this code, we analyze the effect of finite extraction radius on the energy fluxes. This paper is the first in a series whose goal is to develop adiabatic waveforms describing the inspiral of a small compact body into a massive Kerr black hole.Comment: 21 pages, 6 figures, accepted by PRD. This version removes the appendix; that content will be subsumed into future wor

    The impact of exercise-induced core body temperature elevations on coagulation responses.

    Get PDF
    OBJECTIVES: Exercise induces changes in haemostatic parameters and core body temperature (CBT). We aimed to assess whether exercise-induced elevations in CBT induce pro-thrombotic changes in a dose-dependent manner. DESIGN: Observational study. METHODS: CBT and haemostatic responses were measured in 62 participants of a 15-km road race at baseline and immediately after finishing. As haemostasis assays are routinely performed at 37°C, we corrected the assay temperature for the individual's actual CBT at baseline and finish in a subgroup of n=25. RESULTS: All subjects (44±11 years, 69% male) completed the race at a speed of 12.1±1.8km/h. CBT increased significantly from 37.6±0.4°C to 39.4±0.8°C (p<0.001). Post-exercise, haemostatic activity was increased, as expressed by accelerated thrombin generation and an attenuated plasmin response. Synchronizing assay temperature to the subjects' actual CBT resulted in additional differences and stronger acceleration of thrombin generation parameters. CONCLUSIONS: This study demonstrates that exercise induces a prothrombotic state, which might be partially dependent on the magnitude of the exercise-induced CBT rise. Synchronizing the assay temperature to approximate the subject's CBT is essential to obtain more accurate insight in the haemostatic balance during thermoregulatory challenging situations. Finally, this study shows that short-lasting exposure to a CBT of 41.2°C does not result in clinical symptoms of severe coagulation. We therefore hypothesize that prolonged exposure to a high CBT or an individual-specific CBT threshold needs to be exceeded before derailment of the haemostatic balance occurs

    Constraining properties of the black hole population using LISA

    Get PDF
    LISA should detect gravitational waves from tens to hundreds of systems containing black holes with mass in the range from 10 thousand to 10 million solar masses. Black holes in this mass range are not well constrained by current electromagnetic observations, so LISA could significantly enhance our understanding of the astrophysics of such systems. In this paper, we describe a framework for combining LISA observations to make statements about massive black hole populations. We summarise the constraints that LISA observations of extreme-mass-ratio inspirals might be able to place on the mass function of black holes in the LISA range. We also describe how LISA observations can be used to choose between different models for the hierarchical growth of structure in the early Universe. We consider four models that differ in their prescription for the initial mass distribution of black hole seeds, and in the efficiency of accretion onto the black holes. We show that with as little as 3 months of LISA data we can clearly distinguish between these models, even under relatively pessimistic assumptions about the performance of the detector and our knowledge of the gravitational waveforms.Comment: 12 pages, 3 figures, submitted to Class. Quantum Grav. for proceedings of 8th LISA Symposium; v2 minor changes for consistency with accepted versio

    High angular resolution integral-field spectroscopy of the Galaxy's nuclear cluster: a missing stellar cusp?

    Get PDF
    We report on the structure of the nuclear star cluster in the innermost 0.16 pc of the Galaxy as measured by the number density profile of late-type giants. Using laser guide star adaptive optics in conjunction with the integral field spectrograph, OSIRIS, at the Keck II telescope, we are able to differentiate between the older, late-type (\sim 1 Gyr) stars, which are presumed to be dynamically relaxed, and the unrelaxed young (\sim 6 Myr) population. This distinction is crucial for testing models of stellar cusp formation in the vicinity of a black hole, as the models assume that the cusp stars are in dynamical equilibrium in the black hole potential. Based on the late-type stars alone, the surface stellar number density profile, Σ(R)RΓ\Sigma(R) \propto R^{-\Gamma}, is flat, with Γ=0.27±0.19\Gamma = -0.27\pm0.19. Monte Carlo simulations of the possible de-projected volume density profile, n(r) rγ\propto r^{-\gamma}, show that γ\gamma is less than 1.0 at the 99.73 % confidence level. These results are consistent with the nuclear star cluster having no cusp, with a core profile that is significantly flatter than predicted by most cusp formation theories, and even allows for the presence of a central hole in the stellar distribution. Of the possible dynamical interactions that can lead to the depletion of the red giants observable in this survey -- stellar collisions, mass segregation from stellar remnants, or a recent merger event -- mass segregation is the only one that can be ruled out as the dominant depletion mechanism. The lack of a stellar cusp around a supermassive black hole would have important implications for black hole growth models and inferences on the presence of a black hole based upon stellar distributions.Comment: 35 pages, 5 tables, 12 figures, accepted by Ap

    Measurement equivalence of the SF-36 in the canadian multicentre osteoporosis study

    Get PDF
    BACKGROUND: Studies that compare health-related quality of life (HRQOL) and other patient-reported outcomes in different populations rest on the assumption that the measure has equivalent psychometric properties across groups. This study examined the measurement equivalence (ME) of the 36-item Medical Outcomes Study Short Form Survey (SF-36), a widely-used measure of HRQOL, by sex and race in a population-based Canadian sample. FINDINGS: SF-36 data were from the Canadian Multicentre Osteoporosis Study, a prospective cohort study that randomly sampled adult men and women from nine sites across Canada. Confirmatory factor analysis (CFA) techniques were used to test hypotheses about four forms of ME, which are based on equality of the factor loadings, variances, covariances, and intercepts. Analyses were conducted for Caucasian and non-Caucasian females (n = 6,539) and males (n = 2,884). CFA results revealed that a measurement model with physical and mental health factors provided a good fit to the data. All forms of ME were satisfied for the study groups. CONCLUSIONS: The results suggest that sex and race do not influence the conceptualization of a general measure of HRQOL in the Canadian population

    The Milky Way Nuclear Star Cluster

    Full text link
    In the center of the Milky Way, as well as in many other galaxies, a compact star cluster around a very massive black hole is observed. One of the possible explanations for the formation of such Nuclear Star Clusters is based on the 'merging' of globular clusters in the inner galactic potential well. By mean of sophisticated N-body simulations, we checked the validity of this hypothesis and found that it may actually has been the one leading to the formation of the Milky Way Nuclear Star Cluster.Comment: 4 pages, 2 figures, proceedings of "Stellar Clusters and Associations - A RIA workshop on GAIA", 23-27 May 2011, Granada, Spai
    corecore