1,286 research outputs found

    Fermi-LAT upper limits on gamma-ray emission from colliding wind binaries

    Full text link
    Context: Colliding wind binaries (CWBs) are thought to give rise to a plethora of physical processes including acceleration and interaction of relativistic particles. Observation of synchrotron radiation in the radio band confirms there is a relativistic electron population in CWBs. Accordingly, CWBs have been suspected sources of high-energy gamma-ray emission since the COS-B era. Theoretical models exist that characterize the underlying physical processes leading to particle acceleration and quantitatively predict the non-thermal energy emission observable at Earth. Aims: We strive to find evidence of gamma-ray emission from a sample of seven CWB systems: WR 11, WR 70, WR 125, WR 137, WR 140, WR 146, and WR 147. Theoretical modelling identified these systems as the most favourable candidates for emitting gamma-rays. We make a comparison with existing gamma-ray flux predictions and investigate possible constraints. Methods: We used 24 months of data from the Large Area Telescope (LAT) on-board the Fermi Gamma Ray Space Telescope to perform a dedicated likelihood analysis of CWBs in the LAT energy range. Results: We find no evidence of gamma-ray emission from any of the studied CWB systems and determine corresponding flux upper limits. For some CWBs the interplay of orbital and stellar parameters renders the Fermi-LAT data not sensitive enough to constrain the parameter space of the emission models. In the cases of WR140 and WR147, the Fermi-LAT upper limits appear to rule out some model predictions entirely and constrain theoretical models over a significant parameter space. A comparison of our findings to the CWB eta Car is made.Comment: 9 pages, 3 figure

    The Imperfective Past

    Get PDF
    The objective of our study was to investigate whether use of antipsychotics is associated with hip/femur fractures and whether pharmacological differences between antipsychotics are related to the occurrence of fractures.A case-control study was conducted, in which cases were defined as patients with a hip/femur fracture. Each patient was matched to one control patient. The association between use of antipsychotics and the occurrence of hip/femur fractures was evaluated using conditional logistic regression.The study included 44,500 patients from 683 general practices from different geographical areas in the UK, registered within the General Practice Research Database (GPRD). Exposure to antipsychotics was categorized as “no use”, “current use” and “prior use”.Both current and prior use of antipsychotics were associated with an approximately two-fold increased risk of fractures. After adjustment for possible confounders, a small significant effect remained (Odds Ratios (OR) of 1.3). We did not find an association between dose of antipsychotics, or between the degree of blockade of the alpha-1 adrenoceptor or histamine-1 receptor and risk of fractures. The total number of days of antipsychotic use was significantly associated with an increased risk of hip/femur fractures.We conclude that there is a small increased risk of hip/femur fractures associated with the use of antipsychotics. This risk increases with long-term use

    Ю.О. Митропольський — вчений та вихователь молоді

    Get PDF
    Висвітлено наукову діяльність та роботу з підготовки наукових кадрів академіка Ю.О. Митропольського. Змальовано його риси як вченого та вихователя молоді.Освещены научная деятельность и работа по подготовке научных кадров академика Ю.А.Митропольского. Обрисованы его черты как ученого и воспитателя молодежи.The paper highlights research and tutorial activities by Academician Yu.O. Mitropolsky. His qualities as a scientist and a tutor of youth are outlined

    Exploring the population of Galactic very-high-energy γ-ray sources

    Get PDF
    At very high energies (VHE), the emission of γ rays is dominated by discrete sources. Due to the limited resolution and sensitivity of current-generation instruments, only a small fraction of the total Galactic population of VHE γ-ray sources has been detected significantly. The larger part of the population can be expected to contribute as a diffuse signal alongside emission originating from propagating cosmic rays. Without quantifying the source population, it is not possible to disentangle these two components. Based on the H.E.S.S. Galactic plane survey, a numerical approach has been taken to develop a model of the population of Galactic VHE γ-ray sources, which is shown to account accurately for the observational bias. We present estimates of the absolute number of sources in the Galactic Plane and their contribution to the total VHE γ-ray emission for five different spatial source distributions. Prospects for CTA and its ability to constrain the model are discussed. Finally, first results of an extension of our modelling approach using machine learning to extract more information from the available data set are presented

    Discovery of VHE gamma-rays from the high-frequency-peaked BL Lac object RGB J0152+017

    Full text link
    Aims: The BL Lac object RGB J0152+017 (z=0.080) was predicted to be a very high-energy (VHE; > 100 GeV) gamma-ray source, due to its high X-ray and radio fluxes. Our aim is to understand the radiative processes by investigating the observed emission and its production mechanism using the High Energy Stereoscopic System (H.E.S.S.) experiment. Methods: We report recent observations of the BL Lac source RGB J0152+017 made in late October and November 2007 with the H.E.S.S. array consisting of four imaging atmospheric Cherenkov telescopes. Contemporaneous observations were made in X-rays by the Swift and RXTE satellites, in the optical band with the ATOM telescope, and in the radio band with the Nancay Radio Telescope. Results: A signal of 173 gamma-ray photons corresponding to a statistical significance of 6.6 sigma was found in the data. The energy spectrum of the source can be described by a powerlaw with a spectral index of 2.95+/-0.36stat+/-0.20syst. The integral flux above 300 GeV corresponds to ~2% of the flux of the Crab nebula. The source spectral energy distribution (SED) can be described using a two-component non-thermal synchrotron self-Compton (SSC) leptonic model, except in the optical band, which is dominated by a thermal host galaxy component. The parameters that are found are very close to those found in similar SSC studies in TeV blazars. Conclusions: RGB J0152+017 is discovered as a source of VHE gamma-rays by H.E.S.S. The location of its synchrotron peak, as derived from the SED in Swift data, allows clearly classification it as a high-frequency-peaked BL Lac (HBL).Comment: Accepted for publication in A&A Letters (5 pages, 4 figures

    Characterizing the gamma-ray long-term variability of PKS 2155-304 with H.E.S.S. and Fermi-LAT

    Get PDF
    Studying the temporal variability of BL Lac objects at the highest energies provides unique insights into the extreme physical processes occurring in relativistic jets and in the vicinity of super-massive black holes. To this end, the long-term variability of the BL Lac object PKS 2155-304 is analyzed in the high (HE, 100 MeV 200 GeV) gamma-ray domain. Over the course of ~9 yr of H.E.S.S observations the VHE light curve in the quiescent state is consistent with a log-normal behavior. The VHE variability in this state is well described by flicker noise (power-spectral-density index {\ss}_VHE = 1.10 +0.10 -0.13) on time scales larger than one day. An analysis of 5.5 yr of HE Fermi LAT data gives consistent results ({\ss}_HE = 1.20 +0.21 -0.23, on time scales larger than 10 days) compatible with the VHE findings. The HE and VHE power spectral densities show a scale invariance across the probed time ranges. A direct linear correlation between the VHE and HE fluxes could neither be excluded nor firmly established. These long-term-variability properties are discussed and compared to the red noise behavior ({\ss} ~ 2) seen on shorter time scales during VHE-flaring states. The difference in power spectral noise behavior at VHE energies during quiescent and flaring states provides evidence that these states are influenced by different physical processes, while the compatibility of the HE and VHE long-term results is suggestive of a common physical link as it might be introduced by an underlying jet-disk connection.Comment: 11 pages, 16 figure

    Detection of variable VHE gamma-ray emission from the extra-galactic gamma-ray binary LMC P3

    Full text link
    Context. Recently, the high-energy (HE, 0.1-100 GeV) γ\gamma-ray emission from the object LMC P3 in the Large Magellanic Cloud (LMC) has been discovered to be modulated with a 10.3-day period, making it the first extra-galactic γ\gamma-ray binary. Aims. This work aims at the detection of very-high-energy (VHE, >100 GeV) γ\gamma-ray emission and the search for modulation of the VHE signal with the orbital period of the binary system. Methods. LMC P3 has been observed with the High Energy Stereoscopic System (H.E.S.S.); the acceptance-corrected exposure time is 100 h. The data set has been folded with the known orbital period of the system in order to test for variability of the emission. Energy spectra are obtained for the orbit-averaged data set, and for the orbital phase bin around the VHE maximum. Results. VHE γ\gamma-ray emission is detected with a statistical significance of 6.4 σ\sigma. The data clearly show variability which is phase-locked to the orbital period of the system. Periodicity cannot be deduced from the H.E.S.S. data set alone. The orbit-averaged luminosity in the 1101-10 TeV energy range is (1.4±0.2)×1035(1.4 \pm 0.2) \times 10^{35} erg/s. A luminosity of (5±1)×1035(5 \pm 1) \times 10^{35} erg/s is reached during 20% of the orbit. HE and VHE γ\gamma-ray emissions are anti-correlated. LMC P3 is the most luminous γ\gamma-ray binary known so far.Comment: 5 pages, 3 figures, 1 table, accepted for publication in A&
    corecore