1,994 research outputs found

    Phase Field Modeling of Fast Crack Propagation

    Get PDF
    We present a continuum theory which predicts the steady state propagation of cracks. The theory overcomes the usual problem of a finite time cusp singularity of the Grinfeld instability by the inclusion of elastodynamic effects which restore selection of the steady state tip radius and velocity. We developed a phase field model for elastically induced phase transitions; in the limit of small or vanishing elastic coefficients in the new phase, fracture can be studied. The simulations confirm analytical predictions for fast crack propagation.Comment: 5 pages, 11 figure

    Crack growth by surface diffusion in viscoelastic media

    Get PDF
    We discuss steady state crack growth in the spirit of a free boundary problem. It turns out that mode I and mode III situations are very different from each other: In particular, mode III exhibits a pronounced transition towards unstable crack growth at higher driving forces, and the behavior close to the Griffith point is determined entirely through crack surface dissipation, whereas in mode I the fracture energy is renormalized due to a remaining finite viscous dissipation. Intermediate mixed-mode scenarios allow steady state crack growth with higher velocities, leading to the conjecture that mode I cracks can be unstable with respect to a rotation of the crack front line

    Breakdown of Scale Invariance in the Phase Ordering of Fractal Clusters

    Full text link
    Our numerical simulations with the Cahn-Hilliard equation show that coarsening of fractal clusters (FCs) is not a scale-invariant process. On the other hand, a typical coarsening length scale and interfacial area of the FC exhibit power laws in time, while the mass fractal dimension remains invariant. The initial value of the lower cutoff is a relevant length scale. A sharp-interface model is formulated that can follow the whole dynamics of a diffusion controlled growth, coarsening, fragmentation and approach to equilibrium in a system with conserved order parameter.Comment: 4 pages, 4 figures, RevTex, submitted to PR

    Pattern formation in directional solidification under shear flow. I: Linear stability analysis and basic patterns

    Full text link
    An asymptotic interface equation for directional solidification near the absolute stabiliy limit is extended by a nonlocal term describing a shear flow parallel to the interface. In the long-wave limit considered, the flow acts destabilizing on a planar interface. Moreover, linear stability analysis suggests that the morphology diagram is modified by the flow near the onset of the Mullins-Sekerka instability. Via numerical analysis, the bifurcation structure of the system is shown to change. Besides the known hexagonal cells, structures consisting of stripes arise. Due to its symmetry-breaking properties, the flow term induces a lateral drift of the whole pattern, once the instability has become active. The drift velocity is measured numerically and described analytically in the framework of a linear analysis. At large flow strength, the linear description breaks down, which is accompanied by a transition to flow-dominated morphologies, described in a companion paper. Small and intermediate flows lead to increased order in the lattice structure of the pattern, facilitating the elimination of defects. Locally oscillating structures appear closer to the instability threshold with flow than without.Comment: 20 pages, Latex, accepted for Physical Review

    Quasiperiodic Tip Splitting in Directional Solidification

    Full text link
    We report experimental results on the tip splitting dynamics of seaweed growth in directional solidification of succinonitrile alloys with poly(ethylene oxide) or acetone as solutes. The seaweed or dense branching morphology was selected by solidifying grains which are oriented close to the {111} plane. Despite the random appearance of the growth, a quasiperiodic tip splitting morphology was observed in which the tip alternately splits to the left and to the right. The tip splitting frequency f was found to be related to the growth velocity V as a power law f V^{1.5}. This finding is consistent with the predictions of a tip splitting model that is also presented. Small anisotropies are shown to lead to different kinds of seaweed morphologies.Comment: 4 pages, 7 figures, submitted to Physical Review Letter

    The universality class of fluctuating pulled fronts

    Get PDF
    It has recently been proposed that fluctuating ``pulled'' fronts propagating into an unstable state should not be in the standard KPZ universality class for rough interface growth. We introduce an effective field equation for this class of problems, and show on the basis of it that noisy pulled fronts in {\em d+1} bulk dimensions should be in the universality class of the {\em (d+1)+1}D KPZ equation rather than of the {\em d+1}D KPZ equation. Our scenario ties together a number of heretofore unexplained observations in the literature, and is supported by previous numerical results.Comment: 4 pages, 2 figure

    Multisensory integration across exteroceptive and interoceptive domains modulates self-experience in the rubber-hand illusion

    Get PDF
    Identifying with a body is central to being a conscious self. The now classic “rubber hand illusion” demonstrates that the experience of body ownership can be modulated by manipulating the timing of exteroceptive(visual and tactile)body-related feedback. Moreover,the strength of this modulation is related to individual differences in sensitivity to internal bodily signals(interoception). However the interaction of exteroceptive and interoceptive signals in determining the experience of body-ownership within an individual remains poorly understood.Here, we demonstrate that this depends on the online integration of exteroceptive and interoceptive signals by implementing an innovative “cardiac rubber hand illusion” that combined computer-generated augmented-reality with feedback of interoceptive (cardiac) information. We show that both subjective and objective measures of virtual-hand ownership are enhanced by cardio-visual feedback in-time with the actual heartbeat,as compared to asynchronous feedback. We further show that these measures correlate with individual differences in interoceptive sensitivity,and are also modulated by the integration of proprioceptive signals instantiated using real-time visual remapping of finger movements to the virtual hand.Our results demonstrate that interoceptive signals directly influence the experience of body ownership via multisensory integration,and they lend support to models of conscious selfhood based on interoceptive predictive coding

    A Phase-Field Model of Spiral Dendritic Growth

    Full text link
    Domains of condensed-phase monolayers of chiral molecules exhibit a variety of interesting nonequilibrium structures when formed via pressurization. To model these domain patterns, we add a complex field describing the tilt degree of freedom to an (anisotropic) complex-phase-field solidification model. The resulting formalism allows for the inclusion of (in general, non-reflection symmetric) interactions between the tilt, the solid-liquid interface, and the bond orientation. Simulations demonstrate the ability of the model to exhibit spiral dendritic growth.Comment: text plus Four postscript figure file

    Metastable lifetimes in a kinetic Ising model: Dependence on field and system size

    Full text link
    The lifetimes of metastable states in kinetic Ising ferromagnets are studied by droplet theory and Monte Carlo simulation, in order to determine their dependences on applied field and system size. For a wide range of fields, the dominant field dependence is universal for local dynamics and has the form of an exponential in the inverse field, modified by universal and nonuniversal power-law prefactors. Quantitative droplet-theory predictions are numerically verified, and small deviations are shown to depend nonuniversally on the details of the dynamics. We identify four distinct field intervals in which the field dependence and statistical properties of the lifetimes are different. The field marking the crossover between the weak-field regime, in which the decay is dominated by a single droplet, and the intermediate-field regime, in which it is dominated by a finite droplet density, vanishes logarithmically with system size. As a consequence the slow decay characteristic of the former regime may be observable in systems that are macroscopic as far as their equilibrium properties are concerned.Comment: 18 pages single spaced. RevTex Version 3. FSU-SCRI-94-1

    Fermi-edge singularities in linear and non-linear ultrafast spectroscopy

    Get PDF
    We discuss Fermi-edge singularity effects on the linear and nonlinear transient response of an electron gas in a doped semiconductor. We use a bosonization scheme to describe the low energy excitations, which allows to compute the time and temperature dependence of the response functions. Coherent control of the energy absorption at resonance is analyzed in the linear regime. It is shown that a phase-shift appears in the coherent control oscillations, which is not present in the excitonic case. The nonlinear response is calculated analytically and used to predict that four wave-mixing experiments would present a Fermi-edge singularity when the exciting energy is varied. A new dephasing mechanism is predicted in doped samples that depends linearly on temperature and is produced by the low-energy bosonic excitations in the conduction band.Comment: long version; 9 pages, 4 figure
    corecore