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We discuss steady state crack growth in the spirit of a free boundary problem. It turns out that mode I

and mode III situations are very different from each other: In particular, mode III exhibits a pronounced

transition towards unstable crack growth at higher driving forces, and the behavior close to the Griffith

point is determined entirely through crack surface dissipation, whereas in mode I the fracture energy is

renormalized due to a remaining finite viscous dissipation. Intermediate mixed-mode scenarios allow

steady state crack growth with higher velocities than for pure mode I.
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The growth of cracks is an important subject in solid
state physics and materials science, still lacking a convinc-
ing physical description in many respects. It links macro-
scopic material properties to microscopic effects in the tiny
tip region and raises the important question which features
of crack growth are generic and can be attributed to larger
classes of materials. Here, the Asaro-Tiller-Grinfeld insta-
bility (ATG) [1,2], which is usually understood as the
morphological instability of a uniaxially stressed surface
or interface, turns out to be strongly related to the problem
of crack growth beyond the Griffith point: Both are based
on the same counterplay between a release of elastic
energy and an increase of surface or fracture energy.
Nevertheless, it is known that the ATG instability leads
to a breakdown of the physical description in the frame-
work of static elasticity, as the unstable solid forms deep
grooves, which, after a finite time, advance with infinitely
high velocity and vanishing tip radius. The reason for this
breakdown is the absence of an additional microscopic
length scale for selection of a cracklike tip radius. Hence,
understanding the selection of a crack tip radius in fracture
has important implications also for the stability of stressed
surfaces.

One of the central questions for any crack model is the
role of dissipation, which is directly connected to the quest
for selection mechanisms for a tip scale. The elastic load-
ing, which is applied far away from the crack tip, is usually
only partially used to create the (macroscopically visible)
crack surfaces; especially for higher propagation speeds a
microbranching instability can significantly increase the
fracture energy [3]. Oscillatory instabilities can also in-
crease dissipation in thin samples [4]. This already indi-
cates that the aspect of dimensionality is important for a
full understanding of crack propagation, and we therefore
investigate here different modes of loading. Although we
have demonstrated that even pure dynamical linear elas-
ticity can regularize the singular crack tip [5], it is natural
to assume that deviations from a pure elastic behavior can
play a crucial role, which can also contribute to dissipation;

plasticity is an important example [6], but still a full
description has not yet been achieved there. It is obvious
that a very detailed modeling of the tip region is required to
investigate these different effects, which include a self-
consistent selection of the crack shape itself.
To address these important questions, we propose a

description of crack propagation in the spirit of interfacial
pattern formation processes by inclusion of viscoelastic
effects. This picture goes beyond the usual small scale
yielding that is frequently used in the modeling of brittle
fracture and includes two dissipative mechanisms: First,
there is dissipation directly at the crack surface; the in-
coming flow of elastic energy is partially converted to
surface energy in order to advance the crack, and the
remaining part is converted to heat. Second, an extended
zone of viscous dissipation is formed around the crack. We
note that this problem is quite complicated as the shape of
the crack, its velocity and the distribution between viscous
and interfacial dissipation have to be determined self-
consistently.
Viscous dissipation in mode I fracture has been dis-

cussed in the literature, and although our results qualita-
tively agree, our model makes a further step as it introduces
this effect as a way to intrinsically regularize the tip-
singularity by selection of the crack tip radius. In contrast,
other models assume a Barenblatt crack tip model or
similar ad-hoc regularization criteria. For details see, for
example, [7,8], and references therein.
For simplicity we assume that the system obeys a trans-

lational invariance in one direction; thus, it is effectively
two dimensional. We assume an isotropic linear viscoelas-
tic medium, ui and �ik are displacement and strain, respec-

tively. The total stress, �ik ¼ �ðelÞ
ik þ �ðvisÞ

ik , is decomposed

into the elastic stress, which is given by Hooke’s law (with
elastic modulus E, Poisson ratio �),

�ðelÞ
ik ¼ E

1þ �

�
�ik þ �

1� 2�
�ik�ll

�
; (1)

and the viscoelastic stress [9]
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�ðvisÞ
ik ¼ 2�½ _�ik � �ik _�ll=3� þ � _�ll�ik; (2)

which is related to the displacement rate through the
viscosities � and � . Since we concentrate here on slow
fracture with velocities far below the Rayleigh speed, the
assumption of static viscoelasticity is legitimate, thus
@�ik=@xk ¼ 0. On the crack contour, the total normal
and shear stresses have to vanish, �nn ¼ �ns ¼ 0, with
the interface normal and tangential directions n and s. The
driving force for crack propagation is given by the chemi-
cal potential [10]

�s ¼ �ð�ðelÞ
ij �ij=2� �	Þ; (3)

with � being the interfacial energy per unit area and� the
atomic volume; the interface curvature 	 is positive for a
convex crack shape. Surface diffusion leads to the follow-
ing expression for the normal velocity at each interface
point

vn ¼ � D

��

@2�s

@s2
; (4)

with the surface diffusion constant D (dimension m4=s).
Notice that 
0 :¼ 2�ð1þ �Þ=E defines a time scale; thus,

ðD
0Þ1=4 defines a length scale parameter which ultimately
leads to selection of the tip scale. In the general case,
another time scale (which does not differ significantly
from 
0) is set similarly by the viscous coefficient � , and
we discuss the specific case that these time scales are equal,
i.e., � ¼ 2�½�=ð1� 2�Þ þ 1=3�. Of course, this simplifi-
cation is only relevant for mode I fracture, as the second
scale does not appear in mode III. Altogether, the above set
of equations fully defines the problem.

We note that for steady state growth with velocity v, the
last equation can be integrated once, and we obtain

vy ¼ D

��

@�s

@s
: (5)

We illustrate the procedure to solve the moving-
boundary viscoelastic problem for mode III fracture in
the steady state regime; for mode I loadings a similar
approach can be used, which will be explained in detail
elsewhere. The symmetric crack is located in the xy plane
and propagates in positive x direction with velocity v.
Then Newton’s equation reads

r2ðuz þ 
0 _uzÞ ¼ 0; (6)

from which we obtain by differentiation r2�xz ¼
r2�yz ¼ 0. We represent the total stress through an ana-

lytical complex potential � with �xz ¼ =ð�Þ and �yz ¼
<ð�Þ. For steady state growth, �ðvisÞ

iz ¼ �v
0�
ðelÞ
iz;x, and we

therefore make a similar ansatz for the representation of

the elastic fields through an analytical function �ðelÞ,
�ðelÞ

xz ¼ =ð�ðelÞÞ and �ðelÞ
yz ¼ <ð�ðelÞÞ. This also guarantees

the integrability of the strain field. The force balance Eq.

(6) is then satisfied for solutions of the complex differential
equation

�ðelÞ � v
0
d

dz
�ðelÞ ¼ �; (7)

with z ¼ xþ iy. For the total stress we use a multipole
expansion with a branch cut along the negative real axis,

� ¼ �
XM
m¼1

Amz
1=2�m; (8)

with real coefficients Ai. The main mode m ¼ 1 is related

to the stress intensity factor, A1 ¼ KIII=�ð2�Þ1=2 (� ¼
E=2ð1þ �Þ is the shear modulus), which we assume to
be given as for ‘‘fixed grips’’ conditions for crack growth in
a strip. The other coefficients are adjusted such that the
boundary condition on the (extended) crack shape, �nz ¼
0, is satisfied. To this end we minimize the residual stress
functional

R
�2

nzds (integrated along the crack contour)
with respect to the expansion coefficients and solve the
arising linear problem numerically for a known crack
shape. We restrict the calculation to a finite number of
modesM in such a way that the final result does not change
noticeably if the accuracy is increased. Equation (7) can
now be solved for each mode, and we obtain

�ðelÞ ¼ �
XM
m¼1

Am�
ðelÞ
m ; (9)

with the recursion relation

�ðelÞ
1 ¼ �1=2ðv
0Þ�1=2 exp

�
z

v
0

�
erfc

ffiffiffiffiffiffiffiffi
z

v
0

s
; (10)

�ðelÞ
mþ1 ¼

1

ðm� 1=2Þv
0 ½z
1=2�m ��ðelÞ

m �: (11)

The integration constant is chosen such that far away from
the crack tip the purely elastic behavior is retained. These
expressions can then be used to obtain the strain from
Hooke’s law, and—after integration—the displacement
field uz.
The strategy of solution is therefore as follows: First, for

known crack shape, the total stress problem is solved in the
spirit of Eq. (8), delivering the coefficients of expansion Ai.
They, together with a given crack speed are used to deter-
mine the elastic stress field according to Eqs. (9)–(11).
Then, in the next step, the chemical potential (3) can be
computed using Hooke’s law. Finally, the steady state Eq.
(5) is a nonlocal and nonlinear relation which is used to
determine a new guess for the crack shape and velocity.
With them, the whole procedure is iterated until a self-
consistent solution is found.
We define a dimensionless driving force

� ¼ �I þ�III ¼ 1� �2

2E�
K2

I þ
1

4��
K2

III; (12)
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where we already included the possibility of mixed-mode
loading, and � ¼ 1 is the Griffith point. From now on, we
set � ¼ 1=3. Figure 1 shows a typical steady state crack
shape for mode III loading in the reference frame
(Lagrangian coordinates); i.e., the elastic displacement is
not included. First, we clearly see that the crack tip scale is
selected self-consistently, and the finite time cusp singu-
larity of the ATG instability does not occur. Therefore, the
presence of viscous bulk dissipation is a way to cure this
well-known problem. Second, it is important that far be-
hind the crack tip the opening decays to zero, which is a
consequence of mass conservation, as expressed by the
equation of motion for surface diffusion (4). Diffusive
transport is therefore restricted to the tip region, and no
long-range transport is required. Qualitatively, the crack
shapes for mode I look very similar.

Interestingly, the propagation velocity differs quite sig-
nificantly for mode I and mode III fracture, as shown in
Fig. 2: For mode III, the crack speed increases with the
driving force, until it reaches a maximum at � � 3:5, then
it decreases, and obviously steady state solutions do not

exist beyond the point � � 3:8. There, the stable branch
merges with another (unstable) solution on which the tip
curvature becomes negative. Beyond the bifurcation point
we expect crack branching, in analogy to our findings for
fast brittle fracture [5]. We note, however, that the scale of
the critical crack speed is here not related to the Rayleigh
speed. Capturing a potential oscillatory instability, which is
found experimentally close to the Rayleigh speed in thin
sheets [4], would require the consideration of asymmetric
crack shapes.
Figure 3 shows the maximum height of the crack as

function of the driving force for different loadings. At� �
1:1 the size of the mode III steady state crack diverges and
v ! 0. The viscous dissipation becomes negligible here,
but the surface dissipation remains finite. This point can be
interpreted as the point of ductile-to-brittle transition:
Below it the size grows indefinitely in time and the crack
slows down, while above this point steady state solutions
with a finite tip scale exist.
Starting from a pure mode III crack, we can now include

additional mode I loadings. Figure 2 shows that this shifts
the bifurcation point towards higher values and therefore
extends the range of steady state solutions towards higher
driving forces. Again, the crack blunts close to the ‘‘nomi-
nal’’ Griffith point� ¼ 1. Simultaneously, the propagation
velocity is significantly reduced in the regime of small �,
as can be clearly seen in the comparison between the cases
with 15% and 85% mode I contribution. Effectively, this
establishes an interval of driving forces, where the crack
speed is very low, and only after this plateau it sharply
increases; this effect becomes more pronounced as the
crack loading is more mode I dominated. The same plateau
can also be found in the tip scale; see Fig. 3.
For the case of mode I, finally, steady state solutions do

not exist below � ¼ 2:6; this result has to be interpreted as
a limiting case with very slow creep with velocities and tip
radii significantly lower than above the point � ¼ 2:6.
Literally, of course, growth starts at � ¼ 1 due to energy
conservation. The presence of this plateau is quite remark-

FIG. 1 (color online). Shape of a mode III crack for � ¼ 2:5 in
the steady state regime. The total incoming elastic energy flux is
converted into surface energy, surface dissipation and viscous
bulk dissipation, which is localized to the scale v
0 around the
crack tip (visualized by the color coding).
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FIG. 2. Steady state propagation velocity as a function of the
driving force for pure mode III and mode I fracture.
Additionally, mixed-mode situations with �I=� ¼ 0:15 and
�I=� ¼ 0:85 are displayed. The velocity scale is v0 ¼
ðD
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FIG. 3. Half crack height as a function of the driving force.
The length scale used here is h0 ¼ ðD
0Þ1=4.
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able, as this effectively renormalizes the ‘‘apparent’’
Griffith point—the driving force where the velocity starts
to increase sharply—to a substantially higher value than
� ¼ 1, although the viscous dissipation remains finite on
the ‘‘creep branch.’’ Again, the crack speed increases
monotonically with the driving force, and the bifurcation
to unstable growth occurs only at very high driving forces.

Finally, Fig. 4 shows how the different mechanisms
contribute to the total energy consumption: From the total
dimensionless driving force the amount �� 1 is dissi-
pated, and the remaining part is used for the creation of
the surfaces of the advancing crack. Obviously, this con-
tribution becomes less important in comparison to the true
dissipation for higher driving forces. The viscous dissipa-
tion is

�v ¼ 1

2�v

Z
V
RdV ¼ 1

2�

Z
S
�ðelÞ

in ui;xds (13)

with the Rayleigh dissipation function R ¼ �ðvisÞ
ik _�ik, and

the integration domain V is the solid phase. The latter
equality in Eq. (13) holds in steady state, where S is the
crack contour. The surface dissipation is

�s ¼ 1

4�

Z
S
�ðelÞ

ik �iknxds� 1 ¼ v

2D

Z
S
y2ds; (14)

with the horizontal component of the interface normal nx;
again, the latter expression, which follows from Eq. (5), is
valid only in the steady state regime. Altogether, we have
� ¼ �s þ �v þ 1.

Starting from the Griffith point the viscous dissipation
continuously increases up to the point where the stable
steady state solution branch terminates. It is quite remark-
able, that for mode I dominated cracks the viscous dissi-
pation �v is much larger than �s, which shows that bulk
dissipation can indeed play a crucial role. Notice that these

(dimensionless) predictions do not depend on model
parameters.
The obtained results lead to the striking conclusion, that

the apparent Griffith point may depend quite substantially
on the mode of loading. Although most models in the
literature are discussed either in the mode I or mode III
case only, we clearly see here that the behavior can be
significantly different in these cases, as soon as bulk dis-
sipation is taken into account. For the specific case of crack
propagation in viscoelastic media we obtain that the onset
of steady state growth is shifted towards higher values in
mode I. It is therefore possible that local rotations or
deformations of the crack front could lead to faster crack
growth and a lower apparent Griffith point. We will leave
this point, also in the context of the principle of local
symmetry, open for future fully time-dependent three-
dimensional investigations.
In summary, we developed a model for crack propaga-

tion in viscoelastic media in the spirit of an interfacial
pattern formation process. Motion occurs due to surface
diffusion along the extended crack shape, which is—to-
gether with the propagation velocity and the tip scale—
selected self-consistently. The steady state regime of the
model is solved numerically using a series expansion
method and a sharp interface description, which efficiently
separates the microscopic crack tip scale from the system
size. The results show that the bulk dissipation in the
surrounding of the crack tip can play a substantial role
especially for higher driving forces, and the crack velocity
depends crucially on the mode of loading.
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FIG. 4. Distribution of energy consumption. The fraction
above the solid curve is the relative contribution of surface
energy generation, the part below the dashed line the viscous
dissipation (shown here for two different admixtures of mode I
loading; for 15% mode I also for the unstable branch). The
remaining part between the curves is the surface dissipation.
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