553 research outputs found

    Parameterized Verification of Graph Transformation Systems with Whole Neighbourhood Operations

    Full text link
    We introduce a new class of graph transformation systems in which rewrite rules can be guarded by universally quantified conditions on the neighbourhood of nodes. These conditions are defined via special graph patterns which may be transformed by the rule as well. For the new class for graph rewrite rules, we provide a symbolic procedure working on minimal representations of upward closed sets of configurations. We prove correctness and effectiveness of the procedure by a categorical presentation of rewrite rules as well as the involved order, and using results for well-structured transition systems. We apply the resulting procedure to the analysis of the Distributed Dining Philosophers protocol on an arbitrary network structure.Comment: Extended version of a submittion accepted at RP'14 Worksho

    Aharonov-Bohm Interferometry with Interacting Quantum Dots: Spin Configurations, Asymmetric Interference Patterns, Bias-Voltage-Induced Aharonov-Bohm Oscillations, and Symmetries of Transport Coefficients

    Full text link
    We study electron transport through multiply-connected mesoscopic geometries containing interacting quantum dots. Our formulation covers both equilibrium and non-equilibrium physics. We discuss the relation of coherent transport channels through the quantum dot to flux-sensitive Aharonov-Bohm oscillations in the total conductance of the device. Contributions to transport in first and second order in the intrinsic line width of the dot levels are addressed in detail. We predict an interaction-induced asymmetry in the amplitude of the interference signal around resonance peaks as a consequence of incoherence associated with spin-flip processes. This asymmetry can be used to probe the total spin of the quantum dot. Such a probe requires less stringent experimental conditions than the Kondo effect, which provides the same information. We show that first-order contributions can be partially or even fully coherent. This contrasts with the sequential-tunneling picture, which describes first-order transport as a sequence of incoherent tunneling processes. We predict bias-voltage induced Aharonov-Bohm oscillations of physical quantities which are independent of flux in the linear-response regime. Going beyond the Onsager relations we analyze the relations between the space symmetry group of the setup and the flux-dependent non-linear conductance.Comment: 22 pages, 11 figure

    Photoemission studies of Ga1x_{1-x}Mnx_{x}As: Mn-concentration dependent properties

    Full text link
    Using angle-resolved photoemission, we have investigated the development of the electronic structure and the Fermi level pinnning in Ga1x_{1-x}Mnx_{x}As with Mn concentrations in the range 1--6%. We find that the Mn-induced changes in the valence-band spectra depend strongly on the Mn concentration, suggesting that the interaction between the Mn ions is more complex than assumed in earlier studies. The relative position of the Fermi level is also found to be concentration-dependent. In particular we find that for concentrations around 3.5--5% it is located very close to the valence-band maximum, which is in the range where metallic conductivity has been reported in earlier studies. For concentration outside this range, larger as well as smaller, the Fermi level is found to be pinned at about 0.15 eV higher energy.Comment: REVTeX style; 7 pages, 3 figure

    Spin interactions of interstitial Mn ions in ferromagnetic GaMnAs

    Full text link
    The recently reported Rutherford backscattering and particle-induced X-ray emission experiments have revealed that in low-temperature MBE grown GaMnAs a significant part of the incorporated Mn atoms occupies tetrahedral interstitial sites in the lattice. Here we study the magnetic properties of these interstitial ions. We show that they do not participate in the hole-induced ferromagnetism. Moreover, Mn interstitial double donors may form pairs with the nearest substitutional Mn acceptors - our calculations evidence that the spins in such pairs are antiferromagnetically coupled by the superexchange. We also show that for the Mn ion in the other, hexagonal, interstitial position (which seems to be the case in the GaMnBeAs samples) the p-d interactions with the holes, responsible for the ferromagnetism, are very much suppressed.Comment: 4 pages, 3 figures, submitted to PR

    Microscopic mechanisms of dephasing due to electron-electron interactions

    Full text link
    We develop a non-perturbative numerical method to study tunneling of a single electron through an Aharonov-Bohm ring where several strongly interacting electrons are bound. Inelastic processes and spin-flip scattering are taken into account. The method is applied to study microscopic mechanisms of dephasing in a non-trivial model. We show that electron-electron interactions described by the Hubbard Hamiltonian lead to strong dephasing: the transmission probability at flux Φ=π\Phi=\pi is high even at small interaction strength. In addition to inelastic scattering, we identify two energy conserving mechanisms of dephasing: symmetry-changing and spin-flip scattering. The many-electron state on the ring determines which of these mechanisms will be at play: transmitted current can occur either in elastic or inelastic channels, with or without changing the spin of the scattering electron.Comment: 11 pages, 16 figures Submitted to Phys. Rev.

    Measurement of W Polarisation at LEP

    Get PDF
    The three different helicity states of W bosons produced in the reaction e+ e- -> W+ W- -> l nu q q~ at LEP are studied using leptonic and hadronic W decays. Data at centre-of-mass energies \sqrt s = 183-209 GeV are used to measure the polarisation of W bosons, and its dependence on the W boson production angle. The fraction of longitudinally polarised W bosons is measured to be 0.218 \pm 0.027 \pm 0.016 where the first uncertainty is statistical and the second systematic, in agreement with the Standard Model expectation

    Search for Anomalous Couplings in the Higgs Sector at LEP

    Get PDF
    Anomalous couplings of the Higgs boson are searched for through the processes e^+ e^- -> H gamma, e^+ e^- -> e^+ e^- H and e^+ e^- -> HZ. The mass range 70 GeV < m_H < 190 GeV is explored using 602 pb^-1 of integrated luminosity collected with the L3 detector at LEP at centre-of-mass energies sqrt(s)=189-209 GeV. The Higgs decay channels H -> ffbar, H -> gamma gamma, H -> Z\gamma and H -> WW^(*) are considered and no evidence is found for anomalous Higgs production or decay. Limits on the anomalous couplings d, db, Delta(g1z), Delta(kappa_gamma) and xi^2 are derived as well as limits on the H -> gamma gamma and H -> Z gamma decay rates

    Measurement of W Polarisation at LEP

    Get PDF
    The three different helicity states of W bosons produced in the reaction e+ e- -> W+ W- -> l nu q q~ at LEP are studied using leptonic and hadronic W decays. Data at centre-of-mass energies \sqrt s = 183-209 GeV are used to measure the polarisation of W bosons, and its dependence on the W boson production angle. The fraction of longitudinally polarised W bosons is measured to be 0.218 \pm 0.027 \pm 0.016 where the first uncertainty is statistical and the second systematic, in agreement with the Standard Model expectation

    Bose-Einstein Correlations of Neutral and Charged Pions in Hadronic Z Decays

    Get PDF
    Bose-Einstein correlations of both neutral and like-sign charged pion pairs are measured in a sample of 2 million hadronic Z decays collected with the L3 detector at LEP. The analysis is performed in the four-momentum difference range 300 MeV < Q < 2 GeV. The radius of the neutral pion source is found to be smaller than that of charged pions. This result is in qualitative agreement with the string fragmentation model

    Z Boson Pair-Production at LEP

    Get PDF
    Events stemming from the pair-production of Z bosons in e^+e^- collisions are studied using 217.4 pb^-1 of data collected with the L3 detector at centre-of-mass energies from 200 GeV up to 209 GeV. The special case of events with b quarks is also investigated. Combining these events with those collected at lower centre-of-mass energies, the Standard Model predictions for the production mechanism are verified. In addition, limits are set on anomalous couplings of neutral gauge bosons and on effects of extra space dimensions
    corecore