935 research outputs found
Multi-minicore Disease
Abstract Multi-minicore Disease (MmD) is a recessively inherited neuromuscular disorder characterized by multiple cores on muscle biopsy and clinical features of a congenital myopathy. Prevalence is unknown. Marked clinical variability corresponds to genetic heterogeneity: the most instantly recognizable classic phenotype characterized by spinal rigidity, early scoliosis and respiratory impairment is due to recessive mutations in the selenoprotein N (SEPN1) gene, whereas recessive mutations in the skeletal muscle ryanodine receptor (RYR1) gene have been associated with a wider range of clinical features comprising external ophthalmoplegia, distal weakness and wasting or predominant hip girdle involvement resembling central core disease (CCD). In the latter forms, there may also be a histopathologic continuum with CCD due to dominant RYR1 mutations, reflecting the common genetic background. Pathogenetic mechanisms of RYR1-related MmD are currently not well understood, but likely to involve altered excitability and/or changes in calcium homeoestasis; calcium-binding motifs within the selenoprotein N protein also suggest a possible role in calcium handling. The diagnosis of MmD is based on the presence of suggestive clinical features and multiple cores on muscle biopsy; muscle MRI may aid genetic testing as patterns of selective muscle involvement are distinct depending on the genetic background. Mutational analysis of the RYR1 or the SEPN1 gene may provide genetic confirmation of the diagnosis. Management is mainly supportive and has to address the risk of marked respiratory impairment in SEPN1-related MmD and the possibility of malignant hyperthermia susceptibility in RYR1-related forms. In the majority of patients, weakness is static or only slowly progressive, with the degree of respiratory impairment being the most important prognostic factor.</p
Gain-switched all-fiber laser with narrow bandwidth
Gain-switching of a CW fiber laser is a simple and cost-effective approach to generate pulses using an all-fiber system. We report on the construction of a narrow bandwidth (below 0.1 nm) gain-switched fiber laser and optimize the pulse energy and pulse duration under this constraint. The extracted pulse energy is 20 jiJ in a duration of 135 ns at 7 kHz. The bandwidth increases for a higher pump pulse energy and repetition rate, and this sets the limit of the output pulse energy. A single power amplifier is added to raise the peak power to the kW-level and the pulse energy to 230 ßJ while keeping the bandwidth below 0.1 nm. This allows frequency doubling in a periodically poled lithium tantalate crystal with a reasonable conversion efficiency
Altered splicing of the BIN1 muscle-specific exon in humans and dogs with highly progressive centronuclear myopathy
Amphiphysin 2, encoded by BIN1, is a key factor for membrane sensing and remodelling in different cell types. Homozygous BIN1 mutations in ubiquitously expressed exons are associated with autosomal recessive centronuclear myopathy (CNM), a mildly progressive muscle disorder typically showing abnormal nuclear centralization on biopsies. In addition, misregulation of BIN1 splicing partially accounts for the muscle defects in myotonic dystrophy (DM). However, the muscle-specific function of amphiphysin 2 and its pathogenicity in both muscle disorders are not well understood. In this study we identified and characterized the first mutation affecting the splicing of the muscle-specific BIN1 exon 11 in a consanguineous family with rapidly progressive and ultimately fatal centronuclear myopathy. In parallel, we discovered a mutation in the same BIN1 exon 11 acceptor splice site as the genetic cause of the canine Inherited Myopathy of Great Danes (IMGD). Analysis of RNA from patient muscle demonstrated complete skipping of exon 11 and BIN1 constructs without exon 11 were unable to promote membrane tubulation in differentiated myotubes. Comparative immunofluorescence and ultrastructural analyses of patient and canine biopsies revealed common structural defects, emphasizing the importance of amphiphysin 2 in membrane remodelling and maintenance of the skeletal muscle triad. Our data demonstrate that the alteration of the muscle-specific function of amphiphysin 2 is a common pathomechanism for centronuclear myopathy, myotonic dystrophy, and IMGD. The IMGD dog is the first faithful model for human BIN1-related CNM and represents a mammalian model available for preclinical trials of potential therapies
Cancer-testis antigen expression in triple-negative breast cancer
Background: Cancer-testis (CT) antigens, frequently expressed in human germline cells but not in somatic tissues, may become aberrantly reexpressed in different cancer types. The aim of this study was to investigate the expression of CT antigens in breast cancer. Patients and methods: A total of 100 selected invasive breast cancers, including 50 estrogen receptor (ER) positive/HER2 negative and 50 triple negative (TN), were examined for NY-ESO-1 and MAGE-A expression by immunohistochemistry. Results: A significantly higher expression of MAGE-A and NY-ESO-1 was detected in TN breast cancers compared with ER-positive tumors (P = 0.04). MAGE-A expression was detected in 13 (26%) TN cancers compared with 5 (10%) ER-positive tumors (P = 0.07). NY-ESO-1 expression was confirmed in nine (18%) TN tumor samples compared with two (4%) ER-positive tumors. Conclusions: MAGE-A and NY-ESO-1 CT antigens are expressed in a substantial proportion of TN breast cancers. Because of the limited therapeutic options for this group of patients, CT antigen-based vaccines might prove to be useful for patients with this phenotype of breast cance
Calcium Homeostasis in Myogenic Differentiation Factor 1 (MyoD)-Transformed, Virally-Transduced, Skin-Derived Equine Myotubes
Dysfunctional skeletal muscle calcium homeostasis plays a central role in the pathophysiology of several human and animal skeletal muscle disorders, in particular, genetic disorders associated with ryanodine receptor 1 (RYR1) mutations, such as malignant hyperthermia, central core disease, multiminicore disease and certain centronuclear myopathies. In addition, aberrant skeletal muscle calcium handling is believed to play a pivotal role in the highly prevalent disorder of Thoroughbred racehorses, known as Recurrent Exertional Rhabdomyolysis. Traditionally, such defects were studied in human and equine subjects by examining the contractile responses of biopsied muscle strips exposed to caffeine, a potent RYR1 agonist. However, this test is not widely available and, due to its invasive nature, is potentially less suitable for valuable animals in training or in the human paediatric setting. Furthermore, increasingly, RYR1 gene polymorphisms (of unknown pathogenicity and significance) are being identified through next generation sequencing projects. Consequently, we have investigated a less invasive test that can be used to study calcium homeostasis in cultured, skin-derived fibroblasts that are converted to the muscle lineage by viral transduction with a MyoD (myogenic differentiation 1) transgene. Similar models have been utilised to examine calcium homeostasis in human patient cells, however, to date, there has been no detailed assessment of the cells’ calcium homeostasis, and in particular, the responses to agonists and antagonists of RYR1. Here we describe experiments conducted to assess calcium handling of the cells and examine responses to treatment with dantrolene, a drug commonly used for prophylaxis of recurrent exertional rhabdomyolysis in horses and malignant hyperthermia in humans
Congenital myopathies:not only a paediatric topic
PURPOSE OF REVIEW: This article reviews adult presentations of the major congenital myopathies - central core disease, multiminicore disease, centronuclear myopathy and nemaline myopathy - with an emphasis on common genetic backgrounds, typical clinicopathological features and differential diagnosis.RECENT FINDINGS: The congenital myopathies are a genetically heterogeneous group of conditions with characteristic histopathological features. Although essentially considered paediatric conditions, some forms - in particular those due to dominant mutations in the skeletal muscle ryanodine receptor (RYR1), the dynamin 2 (DNM2), the amphiphysin 2 (BIN1) and the Kelch repeat-and BTB/POZ domain-containing protein 13 (KBTBD13) gene - may present late into adulthood. Moreover, dominant RYR1 mutations associated with the malignant hyperthermia susceptibility trait have been recently identified as a common cause of (exertional) rhabdomyolysis presenting throughout life. In addition, improved standards of care and development of new therapies will result in an increasing number of patients with early-onset presentations transitioning to the adult neuromuscular clinic. Lastly, if nemaline rods are the predominant histopathological feature, acquired treatable conditions have to be considered in the differential diagnosis.SUMMARY: Recently identified genotypes and phenotypes indicate a spectrum of the congenital myopathies extending into late adulthood, with important implications for clinical practice.</p
CTdatabase: a knowledge-base of high-throughput and curated data on cancer-testis antigens
The potency of the immune response has still to be harnessed effectively to combat human cancers. However, the discovery of T-cell targets in melanomas and other tumors has raised the possibility that cancer vaccines can be used to induce a therapeutically effective immune response against cancer. The targets, cancer-testis (CT) antigens, are immunogenic proteins preferentially expressed in normal gametogenic tissues and different histological types of tumors. Therapeutic cancer vaccines directed against CT antigens are currently in late-stage clinical trials testing whether they can delay or prevent recurrence of lung cancer and melanoma following surgical removal of primary tumors. CT antigens constitute a large, but ill-defined, family of proteins that exhibit a remarkably restricted expression. Currently, there is a considerable amount of information about these proteins, but the data are scattered through the literature and in several bioinformatic databases. The database presented here, CTdatabase (http://www.cta.lncc.br), unifies this knowledge to facilitate both the mining of the existing deluge of data, and the identification of proteins alleged to be CT antigens, but that do not have their characteristic restricted expression pattern. CTdatabase is more than a repository of CT antigen data, since all the available information was carefully curated and annotated with most data being specifically processed for CT antigens and stored locally. Starting from a compilation of known CT antigens, CTdatabase provides basic information including gene names and aliases, RefSeq accession numbers, genomic location, known splicing variants, gene duplications and additional family members. Gene expression at the mRNA level in normal and tumor tissues has been collated from publicly available data obtained by several different technologies. Manually curated data related to mRNA and protein expression, and antigen-specific immune responses in cancer patients are also available, together with links to PubMed for relevant CT antigen article
CAV3 mutations causing exercise intolerance, myalgia and rhabdomyolysis: expanding the phenotypic spectrum of caveolinopathies
Rhabdomyolysis is often due to a combination of environmental trigger(s) and genetic predisposition; however, the underlying genetic cause remains elusive in many cases. Mutations in CAV3 lead to various neuromuscular phenotypes with partial overlap, including limb girdle muscular dystrophy type 1C (LGMD1C), rippling muscle disease, distal myopathy and isolated hyperCKemia. Here we present a series of eight patients from seven families presenting with exercise intolerance and rhabdomyolysis caused by mutations in CAV3 diagnosed by next generation sequencing (NGS) (n=6). Symptoms included myalgia (n=7), exercise intolerance (n=6) and episodes of rhabdomyolysis (n=2). Percussion-induced rapid muscle contractions (PIRCs) were seen in five out of six patients examined. A previously reported heterozygous mutation in CAV3 (p.T78M) and three novel variants (p.V14I, p.F41S, p.F54V) were identified. Caveolin-3 immunolabeling in muscle was normal in 3/4 patients however, immunoblotting showed more than 50% reduction of caveolin-3 in five patients compared with controls. This case series demonstrates that exercise intolerance, myalgia and rhabdomyolysis may be caused by CAV3 mutations and broadens the phenotypic spectrum of caveolinopathies. In our series immunoblotting was a more sensitive method to detect reduced caveolin-3 levels than immunohistochemistry in skeletal muscle. Patients presenting with muscle pain, exercise intolerance and rhabdomyolysis should be routinely tested for PIRCs as this may be an important clinical clue for caveolinopathies, even in the absence of other “typical” features. The use of NGS may expand current knowledge concerning inherited diseases, and unexpected/atypical phenotypes may be attributed to well-known human disease genes
Genetic events in the progression of adenoid cystic carcinoma of the breast to high-grade triple-negative breast cancer
Adenoid cystic carcinoma of the breast is a rare histologic type of triple-negative breast cancer with an indolent clinical behavior, often driven by the MYB-NFIB fusion gene. Here we sought to define the repertoire of somatic genetic alterations in two adenoid cystic carcinomas associated with high-grade triple-negative breast cancer. The different components of each case were subjected to copy number profiling and massively parallel sequencing targeting all exons and selected regulatory and intronic regions of 488 genes. Reverse transcription PCR and fluorescence in situ hybridization were employed to investigate the presence of the MYB-NFIB translocation. The MYB-NFIB fusion gene was detected in both adenoid cystic carcinomas and their associated high-grade triple-negative breast cancer components. Whilst the distinct components of both cases displayed similar patterns of gene copy number alterations, massively parallel sequencing analysis revealed intra-tumor genetic heterogeneity. In case 1, progression from the trabecular adenoid cystic carcinoma to the high-grade triple-negative breast cancer was found to involve clonal shifts with enrichment of mutations affecting EP300, NOTCH1, ERBB2 and FGFR1 in the high-grade triple-negative breast cancer. In case 2, a clonal KMT2C mutation was present in the cribriform adenoid cystic carcinoma, solid adenoid cystic carcinoma and high-grade triple-negative breast cancer components, whereas a mutation affecting MYB was present only in the solid and high-grade triple-negative breast cancer areas and additional three mutations targeting STAG2, KDM6A and CDK12 were restricted to the high-grade triple-negative breast cancer. In conclusion, adenoid cystic carcinomas of the breast with high-grade transformation are underpinned by MYB-NFIB fusion gene, and, akin to other forms of cancer, may be constituted by a mosaic of cancer cell clones at diagnosis. The progression from adenoid cystic carcinoma to high-grade triple-negative breast cancer of no special type may involve the selection of neoplastic clones and/ or the acquisition of additional genetic alterations
Tumour antigen expression in hepatocellular carcinoma in a low-endemic western area
Background: Identification of tumour antigens is crucial for the development of vaccination strategies against hepatocellular carcinoma (HCC). Most studies come from eastern-Asia, where hepatitis-B is the main cause of HCC. However, tumour antigen expression is poorly studied in low-endemic, western areas where the aetiology of HCC differs. Methods: We constructed tissue microarrays from resected HCC tissue of 133 patients. Expression of a comprehensive panel of cancer-testis (MAGE-A1, MAGE-A3/4, MAGE-A10, MAGE-C1, MAGE-C2, NY-ESO-1, SSX-2, sperm protein 17), onco-fetal (AFP, Glypican-3) and overexpressed tumour antigens (Annexin-A2, Wilms tumor-1, Survivin, Midkine, MUC-1) was determined by immunohistochemistry. Results: A higher prevalence of MAGE antigens was observed in patients with hepatitis-B. Patients with expression of more tumour antigens in general had better HCC-specific survival (P=0.022). The four tumour antigens with high expression in HCC and no, or weak, expression in surrounding tumour-free-liver tissue, were Annexin-A2, GPC-3, MAGE-C1 and MAGE-C2, expressed in 90, 39, 17 and 20% of HCCs, respectively. Ninety-five percent of HCCs expressed at least one of these four tumour antigens. Interestingly, GPC-3 was associated with SALL-4 expression (P=0.001), an oncofetal transcription factor highly expressed in embryonal stem cells. SALL-4 and GPC-3 expression levels were correlated with vascular invasion, poor differentiation and higher AFP levels before surgery. Moreover, patients who co-expressed higher levels of both GPC-3 and SALL-4 had worse HCC-specific survival (P=0.018). Conclusions: We describe a panel of four tumour antigens with excellent coverage and good tumour specificity in a western area, low-endemic for hepatitis-B. The association between GPC-3 and SALL-4 is a novel finding and suggests that GPC-3 targeting may specifically attack the tumour stem-cell compartment
- …
