676 research outputs found

    Polygenic mechanisms underpinning the response to exercise-induced muscle damage in humans:In vivo and in vitro evidence

    Get PDF
    We investigated whether 20 candidate single nucleotide polymorphisms (SNPs) were associated with in vivo exercise-induced muscle damage (EIMD), and with an in vitro skeletal muscle stem cell wound healing assay. Sixty-five young, untrained Caucasian adults performed 120 maximal eccentric knee-extensions on an isokinetic dynamometer to induce EIMD. Maximal voluntary isometric/isokinetic knee-extensor torque, knee joint range of motion (ROM), muscle soreness, serum creatine kinase activity and interleukin-6 concentration were assessed before, directly after and 48 h after EIMD. Muscle stem cells were cultured from vastus lateralis biopsies from a separate cohort (n = 12), and markers of repair were measured in vitro. Participants were genotyped for all 20 SNPs using real-time PCR. Seven SNPs were associated with the response to EIMD, and these were used to calculate a total genotype score, which enabled participants to be segregated into three polygenic groups: ‘preferential’ (more ‘protective’ alleles), ‘moderate’, and ‘non-preferential’. The non-preferential group was consistently weaker than the preferential group (1.93 ± 0.81 vs. 2.73 ± 0.59 N ∙ m/kg; P = 9.51 × 10−4) and demonstrated more muscle soreness (p = 0.011) and a larger decrease in knee joint ROM (p = 0.006) following EIMD. Two TTN-AS1 SNPs in linkage disequilibrium were associated with in vivo EIMD (rs3731749, p ≤ 0.005) and accelerated muscle stem cell migration into the artificial wound in vitro (rs1001238, p ≤ 0.006). Thus, we have identified a polygenic profile, linked with both muscle weakness and poorer recovery following EIMD. Moreover, we provide evidence for a novel TTN gene-cell-skeletal muscle mechanism that may help explain some of the interindividual variability in the response to EIMD.</p

    Passive Heat Therapy in Sedentary Humans Increases Skeletal Muscle Capillarisation and eNOS Content but Not Mitochondrial Density or GLUT4 Content.

    Get PDF
    Passive heat therapy (PHT) has been proposed as an alternative intervention to traditional moderate intensity continous training (MICT) in individuals who are unable or unwilling to exercise. This study aimed to make the first comparison of the effect of PHT and MICT on 1) skeletal muscle capillarisation and endothelial specific eNOS content and 2) mitochondrial density, GLUT4 and IMTG content. Twenty young sedentary males (21±1years, BMI 25±1kg.m-2) were allocated to either 6 weeks of PHT (n=10; 40-50min at 40°C in a heat chamber, 3x/wk) or MICT (n=10; time matched cycling at ~65% VO2peak). Muscle biopsies were taken from the vastus lateralis muscle pre- and post-training. Immunofluorescence microscopy was used to assess changes in skeletal muscle mitochondrial density, GLUT4 and IMTG content, capillarisation and endothelial specific eNOS content. VO2peak and whole body insulin sensitivity were also assessed. PHT and MICT both increased capillary density and capillary-fibre perimeter exchange index (P<0.05), and endothelial specific eNOS content (P<0.05). However, unlike MICT (P<0.05) PHT did not increase mitochondrial density (P=0.443), GLUT4 (P=0.217) or IMTG content (P=0.957). Both intervention improved aerobic capacity and whole body insulin sensitivity (P<0.05). 6 weeks PHT in young sedentary males increases skeletal muscle capillarisation and eNOS content to a similar extent as MICT, however, unlike MICT PHT does not affect skeletal muscle mitochondrial density, GLUT4 or IMTG content

    Ex Vivo treatment of coronary artery endothelial cells with serum post-exercise training offers limited protection against in vitro exposure to FEC-T chemotherapy

    Get PDF
    Background: Chemotherapy treatment for breast cancer associates with well-documented cardiovascular detriments. Exercise has shown promise as a potentially protective intervention against cardiac toxicity. However, there is a paucity of evidence for the benefits of exercise on the vasculature. Objectives: This study aimed to determine the effects of chemotherapy on the vascular endothelium; and if there are protective effects of serological alterations elicited by an exercise training intervention. Methods and Results: 15 women participated in a 12-week home-based exercise intervention consisting of three high-intensity interval sessions per week. Human coronary artery endothelial cells (HCAEC) were exposed to physiological concentrations of 5-fluorouracil, epirubicin, cyclophosphamide (FEC) and docetaxel to determine a dose-response. Twenty-4 hours prior to FEC and docetaxel exposure, HCAECs were preconditioned with serum collected pre- and post-training. Annexin V binding and cleaved caspase-3 were assessed using flow cytometry and wound repair by scratch assays. Chemotherapy exposure increased HCAEC Annexin V binding, cleaved caspase-3 expression in a dose-dependent manner; and inhibited wound repair. Compared to pre-training serum, conditioning HCAECs with post-training serum, reduced Annexin V binding (42% vs. 30%, p = 0.01) when exposed to FEC. For docetaxel, there were no within-group differences (pre-vs post-exercise) for Annexin V binding or cleaved caspase-3 expression. There was a protective effect of post-training serum on wound repair for 5-flurouracil (p = 0.03) only. Conclusion: FEC-T chemotherapy drugs cause significant damage and dysfunction of endothelial cells. Preconditioning with serum collected after an exercise training intervention, elicited some protection against the usual toxicity of FEC-T, when compared to control serum

    Ex Vivo treatment of coronary artery endothelial cells with serum post-exercise training offers limited protection against in vitro exposure to FEC-T chemotherapy

    Get PDF
    Background: Chemotherapy treatment for breast cancer associates with well-documented cardiovascular detriments. Exercise has shown promise as a potentially protective intervention against cardiac toxicity. However, there is a paucity of evidence for the benefits of exercise on the vasculature. Objectives: This study aimed to determine the effects of chemotherapy on the vascular endothelium; and if there are protective effects of serological alterations elicited by an exercise training intervention. Methods and Results: 15 women participated in a 12-week home-based exercise intervention consisting of three high-intensity interval sessions per week. Human coronary artery endothelial cells (HCAEC) were exposed to physiological concentrations of 5-fluorouracil, epirubicin, cyclophosphamide (FEC) and docetaxel to determine a dose-response. Twenty-4 hours prior to FEC and docetaxel exposure, HCAECs were preconditioned with serum collected pre- and post-training. Annexin V binding and cleaved caspase-3 were assessed using flow cytometry and wound repair by scratch assays. Chemotherapy exposure increased HCAEC Annexin V binding, cleaved caspase-3 expression in a dose-dependent manner; and inhibited wound repair. Compared to pre-training serum, conditioning HCAECs with post-training serum, reduced Annexin V binding (42% vs. 30%, p = 0.01) when exposed to FEC. For docetaxel, there were no within-group differences (pre-vs post-exercise) for Annexin V binding or cleaved caspase-3 expression. There was a protective effect of post-training serum on wound repair for 5-flurouracil (p = 0.03) only. Conclusion: FEC-T chemotherapy drugs cause significant damage and dysfunction of endothelial cells. Preconditioning with serum collected after an exercise training intervention, elicited some protection against the usual toxicity of FEC-T, when compared to control serum

    Graded reductions in pre-exercise glycogen concentration do not augment exercise-induced nuclear AMPK and PGC-1α protein content in human muscle.

    Get PDF
    NEW FINDINGS: What is the central question of this study? What is the absolute level of pre-exercise glycogen concentration required to augment the exercise-induced signalling response regulating mitochondrial biogenesis? What is the main finding and its importance? Commencing high-intensity endurance exercise with reduced pre-exercise muscle glycogen concentrations confers no additional benefit to the early signalling responses that regulate mitochondrial biogenesis. ABSTRACT: We examined the effects of graded muscle glycogen on the subcellular location of AMPK and PGC-1α protein content and mRNA expression of genes associated with the regulation of mitochondrial biogenesis and substrate utilisation in human skeletal muscle. In a repeated measures design, eight trained male cyclists completed acute high-intensity interval (HIT) cycling (8 × 5 min at 80% peak power output) with graded concentrations of pre-exercise muscle glycogen. Following initial glycogen depleting exercise, subjects ingested  2 g kg-1  (L-CHO), 6 g kg-1  (M-CHO) or 14 g kg-1  (H-CHO) of carbohydrate during a 36 h period, such that exercise was commenced with graded (P < 0.05) muscle glycogen concentrations (H-CHO; 531 ± 83, M-CHO; 332 ± 88, L-CHO; 208 ± 79 mmol·kg-1  dw). Exercise depleted muscle glycogen to < 300 mmol·kg-1 dw in all trials (H-CHO; 270 ± 88, M-CHO; 173 ± 74, L-CHO; 100 ± 42 mmol·kg-1 dw) and induced comparable increases in nuclear AMPK protein content (∼2 fold) and PGC-1α (∼5 fold), p53 (∼1.5 fold) and CPT-1 (∼2 fold) mRNA between trials (all P < 0.05). The magnitude of increase in PGC-1α mRNA was also positively correlated with post-exercise glycogen concentration (P < 0.05). In contrast, exercise nor carbohydrate availability affected the subcellular location of PGC-1α protein or PPAR, SCO2, SIRT1, DRP1, MFN2 or CD36 mRNA. Using a sleep-low, train-low model with a high-intensity endurance exercise stimulus, we conclude that pre-exercise muscle glycogen does not modulate skeletal muscle cell signalling. This article is protected by copyright. All rights reserved

    New Zealand blackcurrant extract enhances fat oxidation during prolonged cycling in endurance-trained females.

    Get PDF
    PURPOSE: New Zealand blackcurrant (NZBC) extract has previously been shown to increase fat oxidation during prolonged exercise, but this observation is limited to males. We examined whether NZBC intake also increases fat oxidation during prolonged exercise in females, and whether this was related to greater concentrations of circulating fatty acids. METHODS: In a randomised, crossover, double-blind design, 16 endurance-trained females (age: 28 ± 8 years, BMI: 21.3 ± 2.1 kg·m-2, VO2max: 43.7 ± 1.1 ml·kg-1·min-1) ingested 600 mg·day-1NZBC extract (CurraNZ™) or placebo (600 mg·day-1microcrystalline cellulose) for 7 days. On day 7, participants performed 120 min cycling at 65% VO2max, using online expired air sampling with blood samples collected at baseline and at 15 min intervals throughout exercise for analysis of glucose, NEFA and glycerol. RESULTS: NZBC extract increased mean fat oxidation by 27% during 120 min moderate-intensity cycling compared to placebo (P = 0.042), and mean carbohydrate oxidation tended to be lower (P = 0.063). Pre-exercise, plasma NEFA (P = 0.034) and glycerol (P = 0.051) concentrations were greater following NZBC intake, although there was no difference between conditions in the exercise-induced increase in plasma NEFA and glycerol concentrations (P > 0.05). Mean fat oxidation during exercise was moderately associated with pre-exercise plasma NEFA concentrations (r = 0.45, P = 0.016). CONCLUSIONS: Intake of NZBC extract for 7 days elevated resting concentrations of plasma NEFA and glycerol, indicative of higher lipolytic rates, and this may underpin the observed increase in fat oxidation during prolonged cycling in endurance-trained females

    Increased muscle blood supply and transendothelial nutrient and insulin transport induced by food intake and exercise: effect of obesity and ageing.

    Get PDF
    This review concludes that a sedentary lifestyle, obesity and ageing impair the vasodilator response of the muscle microvasculature to insulin, exercise and VEGF-A and reduce microvascular density. Both impairments contribute to the development of insulin resistance, obesity and chronic age-related diseases. A physically active lifestyle keeps both the vasodilator response and microvascular density high. Intravital microscopy has shown that microvascular units (MVUs) are the smallest functional elements to adjust blood flow in response to physiological signals and metabolic demands on muscle fibres. The luminal diameter of a common terminal arteriole (TA) controls blood flow through up to 20 capillaries belonging to a single MVU. Increases in plasma insulin and exercise/muscle contraction lead to recruitment of additional MVUs. Insulin also increases arteriolar vasomotion. Both mechanisms increase the endothelial surface area and therefore transendothelial transport of glucose, fatty acids (FAs) and insulin by specific transporters, present in high concentrations in the capillary endothelium. Future studies should quantify transporter concentration differences between healthy and at risk populations as they may limit nutrient supply and oxidation in muscle and impair glucose and lipid homeostasis. An important recent discovery is that VEGF-B produced by skeletal muscle controls the expression of FA transporter proteins in the capillary endothelium and thus links endothelial FA uptake to the oxidative capacity of skeletal muscle, potentially preventing lipotoxic FA accumulation, the dominant cause of insulin resistance in muscle fibres

    Decreased Aerobic Exercise Capacity After Long-Term Remission From Cushing Syndrome: Exploration of Mechanisms.

    Get PDF
    BACKGROUND: Although major improvements are achieved after cure of Cushing syndrome (CS), fatigue and decreased quality of life persist. This is the first study to measure aerobic exercise capacity in patients in remission of CS for more than 4 years in comparison with matched controls, and to investigate whether the reduction in exercise capacity is related to alterations in muscle tissue. METHODS: Seventeen patients were included. A control individual, matched for sex, estrogen status, age, body mass index, smoking, ethnicity, and physical activity level was recruited for each patient. Maximal aerobic capacity (VO2peak) was assessed during incremental bicycle exercise to exhaustion. In 8 individually matched patients and controls, a percutaneous muscle biopsy was obtained and measures were made of cross-sectional areas, capillarization, and oxphos complex IV (COXIV) protein content as an indicator of mitochondrial content. Furthermore, protein content of endothelial nitric oxide synthase (eNOS) and eNOS phosphorylated on serine1177 and of the NAD(P)H-oxidase subunits NOX2, p47phox, and p67phox were measured in the microvascular endothelial layer. FINDINGS: Patients showed a lower mean VO2peak (SD) (28.0 [7.0] vs 34.8 [7.9] ml O2/kg bw/min, P < .01), maximal workload (SD) (176 [49] vs 212 [67] watt, P = .01), and oxygen pulse (SD) (12.0 [3.7] vs 14.8 [4.2] ml/beat, P < .01) at VO2peak. No differences were seen in muscle fiber type-specific cross-sectional area, capillarization measures, mitochondrial content, and protein content of eNOS, eNOS-P-ser1177, NOX2, p47phox, and p67phox. INTERPRETATION: Because differences in muscle fiber and microvascular outcome measures are not statistically significant, we hypothesize that cardiac dysfunction, seen in active CS, persists during remission and limits blood supply to muscles
    • …
    corecore