31 research outputs found

    Food allergy enhances allergic asthma in mice

    Get PDF
    BackgroundAtopic march refers to the typical transition from a food allergy in early childhood to allergic asthma in older children and adults. However the precise interplay of events involving gut, skin and pulmonary inflammation in this process is not completely understood.ObjectivesTo develop a mouse model of mixed food and respiratory allergy mimicking the atopic march and better understand the impact of food allergies on asthma.MethodsFood allergy to ovalbumin (OVA) was induced through intra-peritoneal sensitization and intra-gastric challenge, and/or a respiratory allergy to house dust mite (HDM) was obtained through percutaneous sensitization and intra-nasal challenges with dermatophagoides farinae (Der f) extract. Digestive, respiratory and systemic parameters were analyzed.ResultsOVA-mediated gut allergy was associated with an increase in jejunum permeability, and a worsening of Der f-induced asthma with stronger airway hyperresponsiveness and pulmonary cell infiltration, notably eosinophils. There was overproduction of the pro-eosinophil chemokine RANTES in broncho-alveolar lavages associated with an enhanced Th2 cytokine secretion and increased total and Der f-specific IgE when the two allergies were present. Both AHR and lung inflammation increased after a second pulmonary challenge.ConclusionGut sensitization to OVA amplifies Der f-induced asthma in mice

    Targeting of Rac1 prevents bronchoconstriction and airway hyperresponsiveness

    No full text
    International audienceBACKGROUND: The molecular mechanisms responsible for airway smooth muscle cells (aSMC) contraction and proliferation in airway hyperresponsiveness (AHR) associated with asthma are still largely unknown. The small GTPases of the Rho family (RhoA, Rac1 and Cdc42) play a central role in SMC functions including migration, proliferation and contraction. OBJECTIVE: The objective of this study is to identify the role of Rac1 in aSMC contraction and to investigate its involvement in AHR associated with allergic asthma. METHODS: To define the role of Rac1 in aSMC, ex- and in vitro analyses of bronchial reactivity were performed on bronchi from smooth muscle (SM)-specific Rac1 knockout mice (SM-Rac1-KO) and human individuals. In addition, this murine model was exposed to allergens (ovalbumin or house dust mite extract) to decipher in vivo the implication of Rac1 in AHR. RESULTS: The specific SMC deletion or pharmacological inhibition of Rac1 in mice prevented the bronchoconstrictor response to methacholine. In human bronchi a similar role of Rac1 was observed during bronchoconstriction. We further demonstrated that Rac1 activation is responsible for bronchoconstrictor-induced increase in intracellular Ca(2+) concentration and contraction both in murine and human bronchial aSMC, through its association with phospholipase C ÎČ2 and the stimulation of inositol 1,4,5-trisphosphate production. In vivo, Rac1 deletion in SMC or pharmacological Rac1 inhibition by nebulization of NSC23766 prevented AHR in murine models of allergic asthma. Moreover, nebulization of NSC23766 decreased eosinophil and neutrophil populations in bronchoalveolar lavages from asthmatic mice. CONCLUSION: Our data reveal an unexpected and essential role of Rac1 in the regulation of intracellular Ca(2+) and contraction of aSMC, and the development of AHR. Rac1 thus appears as an attractive therapeutic target in asthma, with a combined beneficial action on both bronchoconstriction and pulmonary inflammation

    Mesenchymal Stem Cells Induce Suppressive Macrophages through Phagocytosis in a Mouse Model of Asthma

    Get PDF
    International audienceac‐ cepted for publication February 01, 2016; available online without sub‐ scription through the open access option. ©AlphaMed Press 1066‐5099/2016/$30.00/0 This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typeset‐ ting, pagination and proofreading process which may lead to differ‐ ences between this version and the Version of Record. Please cite this article as 1,2,3,4 Key words. house dust mite asthma mesenchymal stem cells M2 macro‐ phage airway hyper‐responsiveness phagocytosis airway smooth muscle contraction. ABSTRACT Mesenchymal stem cell (MSC) immunosuppressive functions make them attractive candidates for anti‐inflammatory therapy in allergic asthma. However the mechanisms by which they ensure therapeutic effects remain to be elucidated. In an acute mouse model of house dust mite (Der f)‐ induced asthma, one i.v. MSC injection was sufficient to normalize and stabilize lung function in Der f‐sensitized mice as compared to control mice. MSC injection decreased in vivo airway responsiveness and de‐ creased ex vivo carbachol‐induced bronchial contraction, maintaining bronchial expression of the inhibitory type 2 muscarinic receptor. To eval‐ uate in vivo MSC survival, MSCs were labelled with PKH26 fluorescent marker prior to i.v. injection, and 1 to 10 days later total lungs were digest‐ ed to obtain single‐cell suspensions. 91.5 ± 2.3% and 86.6 ± 6.3% of the recovered PKH26 + lung cells expressed specific macrophage markers in control and Der f mice respectively, suggesting that macrophages had phagocyted in vivo the injected MSCs. Interestingly, only PKH26 + macro‐ phages expressed M2 phenotype, while the innate PKH26 ‐ macrophages expressed M1 phenotype. Finally, the remaining 0.5% PKH26 + MSCs ex‐ pressed 10 to 100 fold more COX‐2 than before injection, suggesting in vivo MSC phenotype modification. Together, the results of this study indicate that MSCs attenuate asthma by being phagocyted by lung macrophages, which in turn acquire a M2 suppressive phenotype. STEM CELLS 2016; 00:000–000 SIGNIFICANCE STATEMENT In a model of asthma, injected mesenchymal stem cells (MSCs) are in vivo phagocyted by lung macrophages in the next 24 hours following i.v. injec‐ tion. Lung macrophages that have phagocyted MSCs, in turn, acquire an im‐ munosuppressive phenotype, responsible for MSC anti‐inflammatory in vivo efficacy

    Neuronal regulation of type 2 innate lymphoid cells via neuromedin U

    No full text
    Group 2 innate lymphoid cells (ILC2s) regulate inflammation, tissue repair and metabolic homeostasis1, and are activated by host-derived cytokines and alarmins1. Discrete subsets of immune cells integrate nervous system cues2, 3, 4, but it remains unclear whether neuron-derived signals control ILC2s. Here we show that neuromedin U (NMU) in mice is a fast and potent regulator of type 2 innate immunity in the context of a functional neuron–ILC2 unit. We found that ILC2s selectively express neuromedin U receptor 1 (Nmur1), and mucosal neurons express NMU. Cell-autonomous activation of ILC2s with NMU resulted in immediate and strong NMUR1-dependent production of innate inflammatory and tissue repair cytokines. NMU controls ILC2s downstream of extracellular signal-regulated kinase and calcium-influx-dependent activation of both calcineurin and nuclear factor of activated T cells (NFAT). NMU treatment in vivo resulted in immediate protective type 2 responses. Accordingly, ILC2-autonomous ablation of Nmur1 led to impaired type 2 responses and poor control of worm infection. Notably, mucosal neurons were found adjacent to ILC2s, and these neurons directly sensed worm products and alarmins to induce NMU and to control innate type 2 cytokines. Our work reveals that neuron–ILC2 cell units confer immediate tissue protection through coordinated neuroimmune sensory responses

    Pulmonary endothelial cell DNA methylation signature in pulmonary arterial hypertension

    No full text
    International audiencePulmonary arterial hypertension (PAH) is a severe and incurable pulmonary vascular disease. One of the primary origins of PAH is pulmonary endothelial dysfunction leading to vasoconstriction, aberrant angiogenesis and smooth muscle cell proliferation, endothelial-to-mesenchymal transition, thrombosis and inflammation. Our objective was to study the epigenetic variations in pulmonary endothelial cells (PEC) through a specific pattern of DNA methylation. DNA was extracted from cultured PEC from idiopathic PAH (n = 11), heritable PAH (n = 10) and controls (n = 18). DNA methylation was assessed using the Illumina HumanMethylation450 Assay. After normalization, samples and probes were clustered according to their methylation profile. Differential clusters were functionally analyzed using bioinformatics tools. Unsupervised hierarchical clustering allowed the identification of two clusters of probes that discriminates controls and PAH patients. Among 147 differential methylated promoters, 46 promoters coding for proteins or miRNAs were related to lipid metabolism. Top 10 up and down-regulated genes were involved in lipid transport including ABCA1, ABCB4, ADIPOQ, miR-26A, BCL2L11. NextBio meta-analysis suggested a contribution of ABCA1 in PAH. We confirmed ABCA1 mRNA and protein downregulation specifically in PAH PEC by qPCR and immunohistochemistry and made the proof-of-concept in an experimental model of the disease that its targeting may offer novel therapeutic options. In conclusion, DNA methylation analysis identifies a set of genes mainly involved in lipid transport pathway which could be relevant to PAH pathophysiology

    Block Copolymer/DNA Vaccination Induces a Strong Allergen-Specific Local Response in a Mouse Model of House Dust Mite Asthma

    Get PDF
    <div><p>Background</p><p>Allergic asthma is caused by abnormal immunoreactivity against allergens such as house dust mites among which <i>Dermatophagoides farinae</i> (Der f) is a common species. Currently, immunotherapy is based on allergen administration, which has variable effect from patient to patient and may cause serious side effects, principally the sustained risk of anaphylaxis. DNA vaccination is a promising approach by triggering a specific immune response with reduced allergenicity.</p><p>Objective</p><p>The aim of the study is to evaluate the effects of DNA immunization with Der f1 allergen specific DNA on allergic sensitization, inflammation and respiratory function in mice.</p><p>Methods</p><p>Mice were vaccinated 28 and 7 days before allergen exposure with a Der f1-encoding plasmid formulated with a block copolymer. Asthma was induced by skin sensitization followed by intra-nasal challenges with Der f extract. Total lung, broncho-alveolar lavage (BAL) and spleen cells were analyzed by flow cytometry for their surface antigen and cytokine expression. Splenocytes and lung cell IFN-Îł production by CD8+ cells in response to Der f CMH1-restricted peptides was assessed by ELISPOT. IgE, IgG1 and IgG2a were measured in serum by ELISA. Specific bronchial hyperresponsiveness was assessed by direct resistance measurements.</p><p>Results</p><p>Compared to animals vaccinated with an irrelevant plasmid, pVAX-Der f1 vaccination induced an increase of B cells in BAL, and an elevation of IL-10 and IFN-Îł but also of IL-4, IL-13 and IL-17 producing CD4+ lymphocytes in lungs and of IL-4 and IL-5 in spleen. In response to CD8-restricted peptides an increase of IFN-Îł was observed among lung cells. IgG2a levels non-specifically increased following block copolymer/DNA vaccination although IgE, IgG1 levels and airways resistances were not impacted.</p><p>Conclusions & Clinical Relevance</p><p>DNA vaccination using a plasmid coding for Der f1 formulated with the block copolymer 704 induces a specific immune response in the model of asthma used herein.</p></div

    Systematic Analysis of Blood Cell Transcriptome in End-Stage Chronic Respiratory Diseases

    No full text
    International audienceBackgroundEnd-stage chronic respiratory diseases (CRD) have systemic consequences, such as weight loss and susceptibility to infection. However the mechanisms of such dysfunctions are as yet poorly explained. We hypothesized that the genes putatively involved in these mechanisms would emerge from a systematic analysis of blood mRNA profiles from pre-transplant patients with cystic fibrosis (CF), pulmonary hypertension (PAH), and chronic obstructive pulmonary disease (COPD).MethodsWhole blood was first collected from 13 patients with PAH, 23 patients with CF, and 28 Healthy Controls (HC). Microarray results were validated by quantitative PCR on a second and independent group (7PAH, 9CF, and 11HC). Twelve pre-transplant COPD patients were added to validate the common signature shared by patients with CRD for all causes. To further clarify a role for hypoxia in the candidate gene dysregulation, peripheral blood mononuclear cells from HC were analysed for their mRNA profile under hypoxia.ResultsUnsupervised hierarchical clustering allowed the identification of 3 gene signatures related to CRD. One was common to CF and PAH, another specific to CF, and the final one was specific to PAH. With the common signature, we validated T-Cell Factor 7 (TCF-7) and Interleukin 7 Receptor (IL-7R), two genes related to T lymphocyte activation, as being under-expressed. We showed a strong impact of the hypoxia on modulation of TCF-7 and IL-7R expression in PBMCs from HC under hypoxia or PBMCs from CRD. In addition, we identified and validated genes upregulated in PAH or CF, including Lectin Galactoside-binding Soluble 3 and Toll Like Receptor 4, respectively.ConclusionsSystematic analysis of blood cell transcriptome in CRD patients identified common and specific signatures relevant to the systemic pathologies. TCF-7 and IL-7R were downregulated whatever the cause of CRD and this could play a role in the higher susceptibility to infection of these patients
    corecore