5 research outputs found

    Mechanisms for a nutrient-conserving carbon pump in a seasonally stratified, temperate continental shelf sea

    Get PDF
    Continental shelf seas may have a significant role in oceanic uptake and storage of carbon dioxide (CO2) from the atmosphere, through a ‘continental shelf pump’ mechanism. The northwest European continental shelf, in particular the Celtic Sea (50°N 8°W), was the target of extensive biogeochemical sampling from March 2014 to September 2015, as part of the UK Shelf Sea Biogeochemistry research programme (UK-SSB). Here, we use the UK-SSB carbonate chemistry and macronutrient measurements to investigate the biogeochemical seasonality in this temperate, seasonally stratified system. Following the onset of stratification, near-surface biological primary production during spring and summer removed dissolved inorganic carbon and nutrients, and a fraction of the sinking particulate organic matter was subsequently remineralised beneath the thermocline. Water column inventories of these variables throughout 1.5 seasonal cycles, corrected for air-sea CO2 exchange and sedimentary denitrification and anammox, isolated the combined effect of net community production (NCP) and remineralisation on the inorganic macronutrient inventories. Overall inorganic inventory changes suggested that a significant fraction (>50%) of the annual NCP of around 3 mol-C m–2 yr–1 appeared to be stored within a long-lived organic matter (OM) pool with a lifetime of several months or more. Moreover, transfers into and out of this pool appeared not to be in steady state over the one full seasonal cycle sampled. Accumulation of such a long-lived and potentially C-rich OM pool is suggested to be at least partially responsible for the estimated net air-to-sea CO2 flux of ∌1.3 mol-C m–2 yr–1 at our study site, while providing a mechanism through which a nutrient-conserving continental shelf pump for CO2 could potentially operate in this and other similar regions

    Managing emerging fisheries of the North Kenya Banks in the context of environmental change

    Get PDF
    The North Kenya Banks have long been considered an important emerging fishery with the potential to spur economic growth for local fishing communities. As a regionally important extension to the otherwise narrow East African continental shelf, the North Kenya Banks remain under studied with implications for efforts to develop a sustainable fisheries management strategy. The local marine ecosystem is known to be strongly influenced by wind driven upwelling processes with seasonal variability driven by the changing monsoon seasons being of particular importance. Nevertheless, the Western Indian Ocean is warming due to anthropogenic climate change with evidence indicating reduced ocean productivity in future. How the ecosystem of the North Kenya Banks will respond is currently uncertain but is of great importance due to the significance of coastal fishery resources to coastal communities, and growing Blue Economy initiatives to exploit the North Kenya Banks fisheries more widely. There is, however, limited knowledge of the processes influencing productivity over the North Kenya Banks regions and currently there is no management plan in place to sustainably manage the fishery resources. Here, information about the North Kenya Banks fisheries are examined in relation to environmental processes and threats from climate change impacts with suggestions for future research and management directions

    Marine robots for coastal ocean research in the Western Indian Ocean

    Get PDF
    Marine robots have the potential to enhance WIO marine research to improve regional adaptation to the challenges presented by climate change by providing enhanced research capacity that bypasses the requirement for expensive infrastructure, such as large research vessels. This paper tests this potential and assesses the readiness of WIO communities to adopt autonomous technologies to meet its marine research priorities. We apply a range of analyses to a marine robots case study undertaken in waters around the island of Pemba, part of the Zanzibar archipelago, in Tanzania in 2019. The campaign formed part of a multinational project focused on increasing WIO capacity to meet food security and ocean sustainability challenges. A community engagement programme with six Tanzanian coastal communities resulted in positive changes in attitudes towards marine robots with reported increases in understanding and acceptance of such technologies. Suspicion of the robots was reduced and a lower risk of removing operational equipment was recorded following the provision of educational material. Cost, risk and benefit analysis shows that marine robots are perceived to provide high level benefits, but come at a high cost that is difficult to achieve using national or regional funding. An assessment of the capacity of WIO marine institutes to adopt such technologies shows that prior to this work, few skills or infrastructure related to marine robots were available to researchers and further confirmed that funding opportunities were perceived to be largely unavailable at institutional, national, regional or international levels. Responses from regional partners following completion of the case study however, revealed an uplift in perceived capacity, particularly related to access to infrastructure and expertise as well as support and opportunities for funding at each level. The presented case study is shown to have been a valuable demonstrator of the benefits of using marine robots to meet WIO coastal ocean research requirements and regional capacity was shown to be substantially increased within the broad range of marine institutes surveyed throughout the case study period. This study demonstrates that taking early steps towards adopting marine autonomous robots has increased WIO regional marine research capacity and increased the confidence and willingness of local researchers to seek alternative solutions to ongoing marine research challenges. Recommendations for future action that will continue to increase the capacity and readiness for regional adoption of marine robots include investment at local, national and regional levels to provide accessible training opportunities and to facilitate regional and international collaborations; investment in a regional hub, or centre of excellence for marine robotic technology; early adoption of newly emerging smaller, cheaper autonomous technologies; investment in local skills and support facilities to aid local buy-in and acceptance while supporting regional capacity

    Observations of vertical mixing in autumn and its effect on the autumn phytoplankton bloom

    Get PDF
    This work examines the seasonal cycle of density structure and its influence on primary production in a temperate shelf sea, with a particular focus on the breakdown of stratification in autumn. We do this by combining new, high resolution observations of water column structure, meteorological forcing, nitrate and chlorophyll fluorescence collected between March 2014 and July 2015 on the North West European Shelf. Our results challenge the generally accepted assumption that convection dominates over wind driven mixing resulting in seasonal breakdown of stratification. Furthermore we found, that vertical mixing in autumn not only transformed the vertical density structure but also the vertical structure of chlorophyll biomass and surface nutrients. The subsurface chlorophyll maximum was eroded and a vertically homogeneous profile of chlorophyll biomass established itself above the pycnocline. This increased mixing also led to replenishment of surface nitrate concentrations, which supported an autumn phytoplankton bloom. While the significance of phytoplankton blooms in autumn has previously not been well quantified, we argue that these can act as a significant contributor to the seasonal drawdown of carbon

    Primary production dynamics on the Agulhas Bank in autumn

    Get PDF
    The Agulhas Bank is a productive shelf sea, supporting important fish stocks, nursery grounds, and spawning sites. Few studies have examined the dynamics of primary production and the physio-chemical conditions that support this productivity during autumn. We report from a 14-day, 51-station survey of the central and eastern (21-27°E) Agulhas Bank in March 2019, during which we examined water-column structure, macronutrients, chlorophyll-a (total and size-fractionated), diatom cell counts and Net Primary Production (NPP). East to west trends were observed, with surface mixed layers (SML) and stratification increasing to the west. Euphotic zones were deeper than the SML, with SML irradiance conditions indicative of favorable light conditions for NPP. On average, surface waters contained ∌1.2 ÎŒmol N L−1 of nitrate (nitrate + nitrite; NO3) and ∌3 ÎŒmol Si L−1 of silicic acid, which contrasts with nutrient deficient subtropical source waters. Surface chlorophyll-a ranged from 0.3 to 5.1 mg m−3, with high values inshore and near the shelf break. Nanoplankton (2–20 ÎŒm) dominated size-fractionated chlorophyll-a, with microplankton (>20 ÎŒm) contributions increasing to the west. Measurements of NPP were collected at seven stations, ranging from 0.3 to 1.1 g C m−2 d−1, with a statistically significant relationship between integrated NPP and surface chlorophyll-a allowing further estimates of NPP (0.1–1.1 g C m−2 d−1). We estimated nitrogen-demand to support NPP, with a comparison to surface NO3 indicating ample nutrients to support daily NPP. Around half of the stations possessed a Subsurface Chlorophyll Maximum (SCM), with chlorophyll-a ranging from 1.7 to 10.3 mg m−3. Characteristics of the SCM (depth, light level, chlorophyll-to-carbon ratios) showed east to west variability, implying that the mechanisms of SCM formation ranged from in-situ growth (east) to photo-acclimation (west)
    corecore