54 research outputs found

    Stacks: Building and Genotyping Loci De Novo From Short-Read Sequences

    Get PDF
    Advances in sequencing technology provide special opportunities for genotyping individuals with speed and thrift, but the lack of software to automate the calling of tens of thousands of genotypes over hundreds of individuals has hindered progress. Stacks is a software system that uses short-read sequence data to identify and genotype loci in a set of individuals either de novo or by comparison to a reference genome. From reduced representation Illumina sequence data, such as RAD-tags, Stacks can recover thousands of single nucleotide polymorphism (SNP) markers useful for the genetic analysis of crosses or populations. Stacks can generate markers for ultra-dense genetic linkage maps, facilitate the examination of population phylogeography, and help in reference genome assembly. We report here the algorithms implemented in Stacks and demonstrate their efficacy by constructing loci from simulated RAD-tags taken from the stickleback reference genome and by recapitulating and improving a genetic map of the zebrafish, Danio rerio

    Retinoic Acid metabolic genes, meiosis, and gonadal sex differentiation in zebrafish.

    Get PDF
    To help understand the elusive mechanisms of zebrafish sex determination, we studied the genetic machinery regulating production and breakdown of retinoic acid (RA) during the onset of meiosis in gonadogenesis. Results uncovered unexpected mechanistic differences between zebrafish and mammals. Conserved synteny and expression analyses revealed that cyp26a1 in zebrafish and its paralog Cyp26b1 in tetrapods independently became the primary genes encoding enzymes available for gonadal RA-degradation, showing lineage-specific subfunctionalization of vertebrate genome duplication (VGD) paralogs. Experiments showed that zebrafish express aldh1a2, which encodes an RA-synthesizing enzyme, in the gonad rather than in the mesonephros as in mouse. Germ cells in bipotential gonads of all zebrafish analyzed were labeled by the early meiotic marker sycp3, suggesting that in zebrafish, the onset of meiosis is not sexually dimorphic as it is in mouse and is independent of Stra8, which is required in mouse but was lost in teleosts. Analysis of dead-end knockdown zebrafish depleted of germ cells revealed the germ cell-independent onset and maintenance of gonadal aldh1a2 and cyp26a1 expression. After meiosis initiated, somatic cell expression of cyp26a1 became sexually dimorphic: up-regulated in testes but not ovaries. Meiotic germ cells expressing the synaptonemal complex gene sycp3 occupied islands of somatic cells that lacked cyp26a1 expression, as predicted by the hypothesis that Cyp26a1 acts as a meiosis-inhibiting factor. Consistent with this hypothesis, females up-regulated cyp26a1 in oocytes that entered prophase-I meiotic arrest, and down-regulated cyp26a1 in oocytes resuming meiosis. Co-expression of cyp26a1 and the pluripotent germ cell stem cell marker pou5f1(oct4) in meiotically arrested oocytes was consistent with roles in mouse to promote germ cell survival and to prevent apoptosis, mechanisms that are central for tipping the sexual fate of gonads towards the female pathway in zebrafish

    Expression profiling of zebrafish sox9 mutants reveals that Sox9 is required for retinal differentiation

    Get PDF
    AbstractThe transcription factor gene Sox9 plays various roles in development, including differentiation of the skeleton, gonads, glia, and heart. Other functions of Sox9 remain enigmatic. Because Sox9 protein regulates expression of target genes, the identification of Sox9 targets should facilitate an understanding of the mechanisms of Sox9 action. To help identify Sox9 targets, we used microarray expression profiling to compare wild-type embryos to mutant embryos lacking activity for both sox9a and sox9b, the zebrafish co-orthologs of Sox9. Candidate genes were further evaluated by whole-mount in situ hybridization in wild-type and sox9 single and double mutant embryos. Results identified genes expressed in cartilage (col2a1a and col11a2), retina (calb2a, calb2b, crx, neurod, rs1, sox4a and vsx1) and pectoral fin bud (klf2b and EST AI722369) as candidate targets for Sox9. Cartilage is a well-characterized Sox9 target, which validates this strategy, whereas retina represents a novel Sox9 function. Analysis of mutant phenotypes confirmed that Sox9 helps regulate the number of Müller glia and photoreceptor cells and helps organize the neural retina. These roles in eye development were previously unrecognized and reinforce the multiple functions that Sox9 plays in vertebrate development

    Genome-wide genetic marker discovery and genotyping using next-generation sequencing,”

    Get PDF
    Abstract | The advent of next-generation sequencing (NGS) has revolutionized genomic and transcriptomic approaches to biology. These new sequencing tools are also valuable for the discovery, validation and assessment of genetic markers in populations. Here we review and discuss best practices for several NGS methods for genome-wide genetic marker development and genotyping that use restriction enzyme digestion of target genomes to reduce the complexity of the target. These new methods -which include reduced-representation sequencing using reduced-representation libraries (RRLs) or complexity reduction of polymorphic sequences (CRoPS), restriction-site-associated DNA sequencing (RAD-seq) and low coverage genotyping -are applicable to both model organisms with high-quality reference genome sequences and, excitingly, to non-model species with no existing genomic data

    Genomics of Secondarily Temperate Adaptation in the Only Non-Antarctic Icefish

    Get PDF
    White-blooded Antarctic icefishes, a family within the adaptive radiation of Antarctic notothenioid fishes, are an example of extreme biological specialization to both the chronic cold of the Southern Ocean and life without hemoglobin. As a result, icefishes display derived physiology that limits them to the cold and highly oxygenated Antarctic waters. Against these constraints, remarkably one species, the pike icefish Champsocephalus esox, successfully colonized temperate South American waters. To study the genetic mechanisms underlying secondarily temperate adaptation in icefishes, we generated chromosome-level genome assemblies of both C. esox and its Antarctic sister species, Champsocephalus gunnari. The C. esox genome is similar in structure and organization to that of its Antarctic congener; however, we observe evidence of chromosomal rearrangements coinciding with regions of elevated genetic divergence in pike icefish populations. We also find several key biological pathways under selection, including genes related to mitochondria and vision, highlighting candidates behind temperate adaptation in C. esox. Substantial antifreeze glycoprotein (AFGP) pseudogenization has occurred in the pike icefish, likely due to relaxed selection following ancestral escape from Antarctica. The canonical AFGP locus organization is conserved in C. esox and C. gunnari, but both show a translocation of two AFGP copies to a separate locus, previously unobserved in cryonotothenioids. Altogether, the study of this secondarily temperate species provides an insight into the mechanisms underlying adaptation to ecologically disparate environments in this otherwise highly specialized group

    Comparative Oncogenomic Analysis of Copy Number Alterations in Human and Zebrafish Tumors Enables Cancer Driver Discovery

    Get PDF
    The identification of cancer drivers is a major goal of current cancer research. Finding driver genes within large chromosomal events is especially challenging because such alterations encompass many genes. Previously, we demonstrated that zebrafish malignant peripheral nerve sheath tumors (MPNSTs) are highly aneuploid, much like human tumors. In this study, we examined 147 zebrafish MPNSTs by massively parallel sequencing and identified both large and focal copy number alterations (CNAs). Given the low degree of conserved synteny between fish and mammals, we reasoned that comparative analyses of CNAs from fish versus human MPNSTs would enable elimination of a large proportion of passenger mutations, especially on large CNAs. We established a list of orthologous genes between human and zebrafish, which includes approximately two-thirds of human protein-coding genes. For the subset of these genes found in human MPNST CNAs, only one quarter of their orthologues were co-gained or co-lost in zebrafish, dramatically narrowing the list of candidate cancer drivers for both focal and large CNAs. We conclude that zebrafish-human comparative analysis represents a powerful, and broadly applicable, tool to enrich for evolutionarily conserved cancer drivers.Kathy and Curt Marble Cancer Research FundArthur C. MerrillNational Institutes of Health (U.S.) (Grant CA106416)National Institutes of Health (U.S.) (Grant ROI RR020833)National Institutes of Health (U.S.) (Grant 1F32GM095213-01

    Consequences of Lineage-Specific Gene Loss on Functional Evolution of Surviving Paralogs: ALDH1A and Retinoic Acid Signaling in Vertebrate Genomes

    Get PDF
    Genome duplications increase genetic diversity and may facilitate the evolution of gene subfunctions. Little attention, however, has focused on the evolutionary impact of lineage-specific gene loss. Here, we show that identifying lineage-specific gene loss after genome duplication is important for understanding the evolution of gene subfunctions in surviving paralogs and for improving functional connectivity among human and model organism genomes. We examine the general principles of gene loss following duplication, coupled with expression analysis of the retinaldehyde dehydrogenase Aldh1a gene family during retinoic acid signaling in eye development as a case study. Humans have three ALDH1A genes, but teleosts have just one or two. We used comparative genomics and conserved syntenies to identify loss of ohnologs (paralogs derived from genome duplication) and to clarify uncertain phylogenies. Analysis showed that Aldh1a1 and Aldh1a2 form a clade that is sister to Aldh1a3-related genes. Genome comparisons showed secondarily loss of aldh1a1 in teleosts, revealing that Aldh1a1 is not a tetrapod innovation and that aldh1a3 was recently lost in medaka, making it the first known vertebrate with a single aldh1a gene. Interestingly, results revealed asymmetric distribution of surviving ohnologs between co-orthologous teleost chromosome segments, suggesting that local genome architecture can influence ohnolog survival. We propose a model that reconstructs the chromosomal history of the Aldh1a family in the ancestral vertebrate genome, coupled with the evolution of gene functions in surviving Aldh1a ohnologs after R1, R2, and R3 genome duplications. Results provide evidence for early subfunctionalization and late subfunction-partitioning and suggest a mechanistic model based on altered regulation leading to heterochronic gene expression to explain the acquisition or modification of subfunctions by surviving ohnologs that preserve unaltered ancestral developmental programs in the face of gene loss

    Evolution of a New Function by Degenerative Mutation in Cephalochordate Steroid Receptors

    Get PDF
    Gene duplication is the predominant mechanism for the evolution of new genes. Major existing models of this process assume that duplicate genes are redundant; degenerative mutations in one copy can therefore accumulate close to neutrally, usually leading to loss from the genome. When gene products dimerize or interact with other molecules for their functions, however, degenerative mutations in one copy may produce repressor alleles that inhibit the function of the other and are therefore exposed to selection. Here, we describe the evolution of a duplicate repressor by simple degenerative mutations in the steroid hormone receptors (SRs), a biologically crucial vertebrate gene family. We isolated and characterized the SRs of the cephalochordate Branchiostoma floridae, which diverged from other chordates just after duplication of the ancestral SR. The B. floridae genome contains two SRs: BfER, an ortholog of the vertebrate estrogen receptors, and BfSR, an ortholog of the vertebrate receptors for androgens, progestins, and corticosteroids. BfSR is specifically activated by estrogens and recognizes estrogen response elements (EREs) in DNA; BfER does not activate transcription in response to steroid hormones but binds EREs, where it competitively represses BfSR. The two genes are partially coexpressed, particularly in ovary and testis, suggesting an ancient role in germ cell development. These results corroborate previous findings that the ancestral steroid receptor was estrogen-sensitive and indicate that, after duplication, BfSR retained the ancestral function, while BfER evolved the capacity to negatively regulate BfSR. Either of two historical mutations that occurred during BfER evolution is sufficient to generate a competitive repressor. Our findings suggest that after duplication of genes whose functions depend on specific molecular interactions, high-probability degenerative mutations can yield novel functions, which are then exposed to positive or negative selection; in either case, the probability of neofunctionalization relative to gene loss is increased compared to existing models

    The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons

    Get PDF
    To connect human biology to fish biomedical models, we sequenced the genome of spotted gar (Lepisosteus oculatus), whose lineage diverged from teleosts before teleost genome duplication (TGD). The slowly evolving gar genome has conserved in content and size many entire chromosomes from bony vertebrate ancestors. Gar bridges teleosts to tetrapods by illuminating the evolution of immunity, mineralization and development (mediated, for example, by Hox, ParaHox and microRNA genes). Numerous conserved noncoding elements (CNEs; often cis regulatory) undetectable in direct human-teleost comparisons become apparent using gar: functional studies uncovered conserved roles for such cryptic CNEs, facilitating annotation of sequences identified in human genome-wide association studies. Transcriptomic analyses showed that the sums of expression domains and expression levels for duplicated teleost genes often approximate the patterns and levels of expression for gar genes, consistent with subfunctionalization. The gar genome provides a resource for understanding evolution after genome duplication, the origin of vertebrate genomes and the function of human regulatory sequences

    Automated methods to infer ancient homology and synteny

    Get PDF
    xiv, 196 p. : ill. (some col.) A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number.Establishing homologous (evolutionary) relationships among a set of genes allows us to hypothesize about their histories: how are they related, how have they changed over time, and are those changes the source of novel features? Likewise, aggregating related genes into larger, structurally conserved regions of the genome allows us to infer the evolutionary history of the genome itself: how have the chromosomes changed in number, gene content, and gene order over time? Establishing homology between genes is important for the construction of human disease models in other organisms, such as the zebrafish, by identifying and manipulating the zebrafish copies of genes involved in the human disease. To make such inferences, researchers compare the genomes of extant species. However, the dynamic nature of genomes, in gene content and chromosomal architecture, presents a major technical challenge to correctly identify homologous genes. This thesis presents a system to infer ancient homology between genes that takes into account a major but previously overlooked source of architectural change in genomes: whole-genome duplication. Additionally, the system integrates genomic conservation of synteny (gene order on chromosomes), providing a new source of evidence in homology assignment that complements existing methods. The work applied these algorithms to several genomes to infer the evolutionary history of genes, gene families, and chromosomes in several case studies and to study several unique architectural features of post-duplication genomes, such as Ohnologs gone missing.Committee in charge: John Conery, Chairperson, Computer & Information Science; Virginia Lo, Member, Computer & Information Science; Arthur Farley, Member, Computer & Information Science; John Postlethwait, Member, Biology; William Cresko, Outside Member, Biolog
    corecore