31 research outputs found

    Exploring the values, preferences, and information needs of patients with NKX2-1-related disorders: A qualitative study protocol

    Get PDF
    Background: NKX2-1-related disorders have a prevalence of 1:500,000 and are therefore considered a rare condition according to the European Commission's definition. The European Reference Network of Rare Neurological Disorders is developing the first clinical practice guideline on the management of this condition, with the support of the Andalusian Health Technology Assessment Area, Endo-ERN, ERN-Lung and Imegen, within the framework of the ERNs Guidelines programme (DG SANTE/2018/B3/030). Within the scope of this programme, it becomes necessary to explore the patient perspective in order to include it in the ongoing clinical practice guideline and accompanying patient information booklet. Methods and analysis: This study will use qualitative methods to explore the values, preferences and information needs of patient with NKX2-1-related disorders and their caregivers. Participants will come from a variety of countries throughout Europe. One focus group and four semi-structured interviews will be conducted. Pairs will analyse the data using Grounded Theory. The Andalusian Regional Ministry of Health's Ethics Coordinating Committee for Biomedical Research (Sevilla, Andalucía, Spain) has approved this study protocol (29/03/2022). Discussion: This is the first study to explore the values, preferences, and information needs of patients with NKX2-1-related disorders. The proposed study's findings will contribute to the generation of useful knowledge that will provide guidance to improve the care given to patients with the studied condition. While this study will provide valuable insights into the perspectives of patients with NKX2-1-related disorders, the findings are unlikely to be generalizable to patients with other conditions.This study is supported by the European Commission within the contract SANTE/2018/B3/030-SI2.813822 under which the ERNs Guidelines programme is being developed. The funders had and will not have a role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Combining Literature Review With a Ground Truth Approach for Diagnosing Huntington's Disease Phenocopy.

    Get PDF
    One percent of patients with a Huntington's disease (HD) phenotype do not have the Huntington (HTT) gene mutation. These are known as HD phenocopies. Their diagnosis is still a challenge. Our objective is to provide a diagnostic approach to HD phenocopies based on medical expertise and a review of the literature. We employed two complementary approaches sequentially: a review of the literature and two surveys analyzing the daily clinical practice of physicians who are experts in movement disorders. The review of the literature was conducted from 1993 to 2020, by extracting articles about chorea or HD-like disorders from the database Pubmed, yielding 51 articles, and analyzing 20 articles in depth to establish the surveys. Twenty-eight physicians responded to the first survey exploring the red flags suggestive of specific disease entities. Thirty-three physicians completed the second survey which asked for the classification of paraclinical tests according to their diagnostic significance. The analysis of the results of the second survey used four different clustering algorithms and the density-based clustering algorithm DBSCAN to classify the paraclinical tests into 1st, 2nd, and 3rd-line recommendations. In addition, we included suggestions from members of the European Reference Network-Rare Neurological Diseases (ERN-RND Chorea & Huntington disease group). Finally, we propose guidance that integrate the detection of clinical red flags with a classification of paraclinical testing options to improve the diagnosis of HD phenocopies

    Thiamine transporter-2 deficiency: outcome and treatment monitoring

    Get PDF
    Background: The clinical characteristics distinguishing treatable thiamine transporter-2 deficiency (ThTR2) due to SLC19A3 genetic defects from the other devastating causes of Leigh syndrome are sparse. Methods. We report the clinical follow-up after thiamine and biotin supplementation in four children with ThTR2 deficiency presenting with Leigh and biotin-thiamine-responsive basal ganglia disease phenotypes. We established whole-blood thiamine reference values in 106 non-neurological affected children and monitored thiamine levels in SLC19A3 patients after the initiation of treatment. We compared our results with those of 69 patients with ThTR2 deficiency after a review of the literature. Results: At diagnosis, the patients were aged 1 month to 17 years, and all of them showed signs of acute encephalopathy, generalized dystonia, and brain lesions affecting the dorsal striatum and medial thalami. One patient died of septicemia, while the remaining patients evidenced clinical and radiological improvements shortly after the initiation of thiamine. Upon follow-up, the patients received a combination of thiamine (10-40 mg/kg/day) and biotin (1-2 mg/kg/day) and remained stable with residual dystonia and speech difficulties. After establishing reference values for the different age groups, whole-blood thiamine quantification was a useful method for treatment monitoring. Conclusions: ThTR2 deficiency is a reversible cause of acute dystonia and Leigh encephalopathy in the pediatric years. Brain lesions affecting the dorsal striatum and medial thalami may be useful in the differential diagnosis of other causes of Leigh syndrome. Further studies are needed to validate the therapeutic doses of thiamine and how to monitor them in these patientsAntecedentes: Las características clínicas distintivas del déficit tratable del trasportador de tiamina tipo 2 (ThTR2) debido a defectos genéticos del SLC19A3 de las otras causas devastadores del síndrome de Leigh son escasas. Métodos: Presentamos el seguimiento clínico después de la administración de suplementos de tiamina y biotina a cuatro niños con deficiencia ThTR2 que presentaban fenotipos de biotin-thiamine responsive basal ganglia disease y síndrome de Leigh. Hemos establecido valores de referencia de tiamina en sangre total en 106 niños sin patología neurológica y monitorizamos los niveles de tiamina en pacientes con mutación del SLC19A3 después del inicio del tratamiento. Hemos comparado nuestros resultados con los de 69 pacientes con deficiencia ThTR2 después de una revisión de la literatura. Resultados: Al momento del diagnóstico , los pacientes tenían entre 1 mes a 17 años, y todos ellos mostraron signos medial. Un paciente murió de septicemia, mientras que el resto de pacientes evidenciaron mejoras clínicas y radiológicas poco después del inicio de la tiamina. Al seguimiento, los pacientes recibieron una combinación de tiamina (10–40 mg/kg/día) y biotina (1–2 mg/kg/día) y se mantuvieron estables, aunque con distonía y dificultades del habla residual. Después de establecer valores de referencia para los diferentes grupos de edad, la cuantificación de tiamina en sangre total demuestra ser un método útil para el seguimiento del tratamiento. Conclusiones: La deficiencia ThTR2 es una causa reversible de la distonía aguda y síndrome de Leigh en la edad pediátrica. Las lesiones cerebrales que afectan el cuerpo estriado dorsal y tálamo medial pueden ser útiles en el diagnóstico diferencial de otras causas de síndrome de Leigh. Se necesitan más estudios para validar las dosis de tiamina y la monitorización terapéutica de estos pacientesSupported by Fondo de Investigación Sanitaria Grant PI12/02010 and PI12/02078; Centre for Biomedical Research on Rare Diseases, an initiative of the Instituto de Salud Carlos III, Barcelona, Spain; Agència de Gestio’ d’Ajuts Universitaris i de Recerca-Agaur FI-DGR 2014 (JD Ortigoza-Escobar

    Molecular characterization of new FBXL4 mutations in patients with mtDNA depletion syndrome

    Get PDF
    Encephalomyopathic mitochondrial DNA (mtDNA) depletion syndrome 13 (MTDPS13) is a rare genetic disorder caused by defects in F-box leucine-rich repeat protein 4 (FBXL4). Although FBXL4 is essential for the bioenergetic homeostasis of the cell, the precise role of the protein remains unknown. In this study, we report two cases of unrelated patients presenting in the neonatal period with hyperlactacidemia and generalized hypotonia. Severe mtDNA depletion was detected in muscle biopsy in both patients. Genetic analysis showed one patient as having in compound heterozygosis a splice site variant c.858+5G>C and a missense variant c.1510T>C (p.Cys504Arg) in FBXL4. The second patient harbored a frameshift novel variant c.851delC (p.Pro284LeufsTer7) in homozygosis. To validate the pathogenicity of these variants, molecular and biochemical analyses were performed using skin-derived fibroblasts. We observed that the mtDNA depletion was less severe in fibroblasts than in muscle. Interestingly, the cells harboring a nonsense variant in homozygosis showed normal mtDNA copy number. Both patient fibroblasts, however, demonstrated reduced mitochondrial transcript quantity leading to diminished steady state levels of respiratory complex subunits, decreased respiratory complex IV (CIV) activity, and finally, low mitochondrial ATP levels. Both patients also revealed citrate synthase deficiency. Genetic complementation assays established that the deficient phenotype was rescued by the canonical version of FBXL4, confirming the pathological nature of the variants. Further analysis of fibroblasts allowed to establish that increased mitochondrial mass, mitochondrial fragmentation, and augmented autophagy are associated with FBXL4 deficiency in cells, but are probably secondary to a primary metabolic defect affecting oxidative phosphorylation

    Leigh syndrome is the main clinical characteristic of PTCD3 deficiency

    Full text link
    Mitochondrial translation defects are a continuously growing group of disorders showing a large variety of clinical symptoms including a wide range of neurological abnormalities. To date, mutations in PTCD3, encoding a component of the mitochondrial ribosome, have only been reported in a single individual with clinical evidence of Leigh syndrome. Here, we describe three additional PTCD3 individuals from two unrelated families, broadening the genetic and phenotypic spectrum of this disorder, and provide definitive evidence that PTCD3 deficiency is associated with Leigh syndrome. The patients presented in the first months of life with psychomotor delay, respiratory insufficiency and feeding difficulties. The neurologic phenotype included dystonia, optic atrophy, nystagmus and tonic-clonic seizures. Brain MRI showed optic nerve atrophy and thalamic changes, consistent with Leigh syndrome. WES and RNA-seq identified compound heterozygous variants in PTCD3 in both families: c.[1453-1G>C];[1918C>G] and c.[710del];[902C>T]. The functional consequences of the identified variants were determined by a comprehensive characterization of the mitochondrial function. PTCD3 protein levels were significantly reduced in patient fibroblasts and, consistent with a mitochondrial translation defect, a severe reduction in the steady state levels of complexes I and IV subunits was detected. Accordingly, the activity of these complexes was also low, and high-resolution respirometry showed a significant decrease in the mitochondrial respiratory capacity. Functional complementation studies demonstrated the pathogenic effect of the identified variants since the expression of wild-type PTCD3 in immortalized fibroblasts restored the steady-state levels of complexes I and IV subunits as well as the mitochondrial respiratory capacity. Additionally, minigene assays demonstrated that three of the identified variants were pathogenic by altering PTCD3 mRNA processing. The fourth variant was a frameshift leading to a truncated protein. In summary, we provide evidence of PTCD3 involvement in human disease confirming that PTCD3 deficiency is definitively associated with Leigh syndrome.© 2022 The Authors. Brain Pathology published by John Wiley & Sons Ltd on behalf of International Society of Neuropathology

    The Genetic Landscape of Complex Childhood-Onset Hyperkinetic Movement Disorders

    Get PDF
    Acord transformatiu CRUE-CSICThis work was supported by an NIHR Professorship (to M.A.K.). M.A.K. has received funding from the Sir Jules Thorn Award for Biomedical Research and Wellcome Trust. B.P.-D. was supported by Instituto de Salud Carlos III, PI 18/01319 and PI21/00248, and has received funding from Beca José Castillejos (CAS14/00328). K.J.P. was supported by an MRC Clinician-Scientist Fellowship (511015) and was supported by the Dystonia Medical Research Foundation and Fight for Sight. S.S.M. has received funding from the Winston Churchill Memorial trust and Cerebral Palsy Alliance.Background and Objective: The objective of this study was to better delineate the genetic landscape and key clinical characteristics of complex, early-onset, monogenic hyperkinetic movement disorders. Methods: Patients were recruited from 14 international centers. Participating clinicians completed standardized proformas capturing demographic, clinical, and genetic data. Two pediatric movement disorder experts reviewed available video footage, classifying hyperkinetic movements according to published criteria. Results: One hundred forty patients with pathogenic variants in 17 different genes (ADCY5, ATP1A3, DDC, DHPR, FOXG1, GCH1, GNAO1, KMT2B, MICU1, NKX2.1, PDE10A, PTPS, SGCE, SLC2A1, SLC6A3, SPR, and TH) were identified. In the majority, hyperkinetic movements were generalized (77%), with most patients (69%) manifesting combined motor semiologies. Parkinsonism-dystonia was characteristic of primary neurotransmitter disorders (DDC, DHPR, PTPS, SLC6A3, SPR, TH); chorea predominated in ADCY5-, ATP1A3-, FOXG1-, NKX2.1-, SLC2A1-, GNAO1-, and PDE10A-related disorders; and stereotypies were a prominent feature in FOXG1- and GNAO1-related disease. Those with generalized hyperkinetic movements had an earlier disease onset than those with focal/segmental distribution (2.5 ± 0.3 vs. 4.7 ± 0.7 years; P = 0.007). Patients with developmental delay also presented with hyperkinetic movements earlier than those with normal neurodevelopment (1.5 ± 2.9 vs. 4.7 ± 3.8 years; P < 0.001). Effective disease-specific therapies included dopaminergic agents for neurotransmitters disorders, ketogenic diet for glucose transporter deficiency, and deep brain stimulation for SGCE-, KMT2B-, and GNAO1-related hyperkinesia. Conclusions: This study highlights the complex phenotypes observed in children with genetic hyperkinetic movement disorders that can lead to diagnostic difficulty. We provide a comprehensive analysis of motor semiology to guide physicians in the genetic investigation of these patients, to facilitate early diagnosis, precision medicine treatments, and genetic counseling. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society

    Genetic, Phenotypic, and Interferon Biomarker Status in ADAR1-Related Neurological Disease

    Get PDF
    International audienceWe investigated the genetic, phenotypic, and interferon status of 46 patients from 37 families with neurological disease due to mutations in ADAR1. The clinicoradiological phenotype encompassed a spectrum of Aicardi–Goutières syndrome, isolated bilateral striatal necrosis, spastic paraparesis with normal neuroimaging, a progressive spastic dystonic motor disorder, and adult-onset psychological difficulties with intracranial calcification. Homozygous missense mutations were recorded in five families. We observed a p.Pro193Ala variant in the heterozygous state in 22 of 23 families with compound heterozygous mutations. We also ascertained 11 cases from nine families with a p.Gly1007Arg dominant-negative mutation, which occurred de novo in four patients, and was inherited in three families in association with marked phenotypic variability. In 50 of 52 samples from 34 patients, we identified a marked upregulation of type I interferon-stimulated gene transcripts in peripheral blood, with a median interferon score of 16.99 (interquartile range [IQR]: 10.64–25.71) compared with controls (median: 0.93, IQR: 0.57–1.30). Thus, mutations in ADAR1 are associated with a variety of clinically distinct neurological phenotypes presenting from early infancy to adulthood, inherited either as an autosomal recessive or dominant trait. Testing for an interferon signature in blood represents a useful biomarker in this context

    The clinical and genetic spectrum of autosomal-recessive TOR1A-related disorders.

    Get PDF
    In the field of rare diseases, progress in molecular diagnostics led to the recognition that variants linked to autosomal-dominant neurodegenerative diseases of later onset can, in the context of biallelic inheritance, cause devastating neurodevelopmental disorders and infantile or childhood-onset neurodegeneration. TOR1A-associated arthrogryposis multiplex congenita 5 (AMC5) is a rare neurodevelopmental disorder arising from biallelic variants in TOR1A, a gene that in the heterozygous state is associated to torsion dystonia-1 (DYT1 or DYT-TOR1A), an early-onset dystonia with reduced penetrance. While 15 individuals with TOR1A-AMC5 have been reported (less than 10 in detail), a systematic investigation of the full disease-associated spectrum has not been conducted. Here, we assess the clinical, radiological and molecular characteristics of 57 individuals from 40 families with biallelic variants in TOR1A. Median age at last follow-up was 3 years (0-24 years). Most individuals presented with severe congenital flexion contractures (95%) and variable developmental delay (79%). Motor symptoms were reported in 79% and included lower limb spasticity and pyramidal signs, as well as gait disturbances. Facial dysmorphism was an integral part of the phenotype, with key features being a broad/full nasal tip, narrowing of the forehead and full cheeks. Analysis of disease-associated manifestations delineated a phenotypic spectrum ranging from normal cognition and mild gait disturbance to congenital arthrogryposis, global developmental delay, intellectual disability, absent speech and inability to walk. In a subset, the presentation was consistent with fetal akinesia deformation sequence with severe intrauterine abnormalities. Survival was 71% with higher mortality in males. Death occurred at a median age of 1.2 months (1 week - 9 years) due to respiratory failure, cardiac arrest, or sepsis. Analysis of brain MRI studies identified non-specific neuroimaging features, including a hypoplastic corpus callosum (72%), foci of signal abnormality in the subcortical and periventricular white matter (55%), diffuse white matter volume loss (45%), mega cisterna magna (36%) and arachnoid cysts (27%). The molecular spectrum included 22 distinct variants, defining a mutational hotspot in the C-terminal domain of the Torsin-1A protein. Genotype-phenotype analysis revealed an association of missense variants in the 3-helix bundle domain to an attenuated phenotype, while missense variants near the Walker A/B motif as well as biallelic truncating variants were linked to early death. In summary, this systematic cross-sectional analysis of a large cohort of individuals with biallelic TOR1A variants across a wide age-range delineates the clinical and genetic spectrum of TOR1A-related autosomal-recessive disease and highlights potential predictors for disease severity and survival
    corecore