68 research outputs found

    TSEMA: interactive prediction of protein pairings between interacting families

    Get PDF
    An entire family of methodologies for predicting protein interactions is based on the observed fact that families of interacting proteins tend to have similar phylogenetic trees due to co-evolution. One application of this concept is the prediction of the mapping between the members of two interacting protein families (which protein within one family interacts with which protein within the other). The idea is that the real mapping would be the one maximizing the similarity between the trees. Since the exhaustive exploration of all possible mappings is not feasible for large families, current approaches use heuristic techniques which do not ensure the best solution to be found. This is why it is important to check the results proposed by heuristic techniques and to manually explore other solutions. Here we present TSEMA, the server for efficient mapping assessment. This system calculates an initial mapping between two families of proteins based on a Monte Carlo approach and allows the user to interactively modify it based on performance figures and/or specific biological knowledge. All the explored mappings are graphically shown over a representation of the phylogenetic trees. The system is freely available at . Standalone versions of the software behind the interface are available upon request from the authors

    Predicting Protein Function with Hierarchical Phylogenetic Profiles: The Gene3D Phylo-Tuner Method Applied to Eukaryotic Genomes

    Get PDF
    “Phylogenetic profiling” is based on the hypothesis that during evolution functionally or physically interacting genes are likely to be inherited or eliminated in a codependent manner. Creating presence–absence profiles of orthologous genes is now a common and powerful way of identifying functionally associated genes. In this approach, correctly determining orthology, as a means of identifying functional equivalence between two genes, is a critical and nontrivial step and largely explains why previous work in this area has mainly focused on using presence–absence profiles in prokaryotic species. Here, we demonstrate that eukaryotic genomes have a high proportion of multigene families whose phylogenetic profile distributions are poor in presence–absence information content. This feature makes them prone to orthology mis-assignment and unsuited to standard profile-based prediction methods. Using CATH structural domain assignments from the Gene3D database for 13 complete eukaryotic genomes, we have developed a novel modification of the phylogenetic profiling method that uses genome copy number of each domain superfamily to predict functional relationships. In our approach, superfamilies are subclustered at ten levels of sequence identity—from 30% to 100%—and phylogenetic profiles built at each level. All the profiles are compared using normalised Euclidean distances to identify those with correlated changes in their domain copy number. We demonstrate that two protein families will “auto-tune” with strong co-evolutionary signals when their profiles are compared at the similarity levels that capture their functional relationship. Our method finds functional relationships that are not detectable by the conventional presence–absence profile comparisons, and it does not require a priori any fixed criteria to define orthologous genes

    Network-Based Methods for Approaching Human Pathologies from a Phenotypic Point of View

    Get PDF
    Network and systemic approaches to studying human pathologies are helping us to gain insight into the molecular mechanisms of and potential therapeutic interventions for human diseases, especially for complex diseases where large numbers of genes are involved. The complex human pathological landscape is traditionally partitioned into discrete “diseases”; however, that partition is sometimes problematic, as diseases are highly heterogeneous and can differ greatly from one patient to another. Moreover, for many pathological states, the set of symptoms (phenotypes) manifested by the patient is not enough to diagnose a particular disease. On the contrary, phenotypes, by definition, are directly observable and can be closer to the molecular basis of the pathology. These clinical phenotypes are also important for personalised medicine, as they can help stratify patients and design personalised interventions. For these reasons, network and systemic approaches to pathologies are gradually incorporating phenotypic information. This review covers the current landscape of phenotype-centred network approaches to study different aspects of human diseasesThis work was partially funded by The Spanish Ministry of Economy and Competitiveness with European Regional Development Fund [grant numbers PID2019-108096RB-C21 and PID2019-108096RB-C22]; the European Food Safety Authority [grant number GP/EFSA/ENCO/2020/02]; the Andalusian Government with European Regional Development Fund [grant numbers UMA18- FEDERJA-102 and PAIDI 2020:PY20-00372]; Fundacion Progreso y Salud [grant number PI-0075-2017], also from the Andalusian Government; the Ramón Areces foundation, which funds project for the investigation of rare disease (National call for research on life and material sciences, XIX edition); the University of Malaga (Ayudas del I Plan Propio) and the Institute of Health Carlos III which funds the IMPaCT-Data project. The CIBERER is an initiative from the Institute of Health Carlos III. The conclusions, findings and opinions expressed in this scientific paper reflect only the view of the authors and not the official position of the European Food Safety Authority. Partial funding for open access charge: Universidad de Málag

    Biofilm formation displays intrinsic offensive and defensive features of Bacillus cereus

    Get PDF
    Biofilm formation is a strategy of many bacterial species to adapt to a variety of stresses and has become a part of infections, contaminations, or beneficial interactions. In this study, we demonstrate that profound physiological changes permit Bacillus cereus to switch from a floating to a sessile lifestyle, to undergo further maturation of the biofilm and to differentiate into the offensive or defensive features. We report that floating and biofilm cells are populations that differentiate metabolically, with members of each subpopulation developing different branches of certain metabolic pathways. Secondly, biofilm populations rearrange nucleotides, sugars, amino acids, and energy metabolism. Thirdly, this metabolic rearrangement coexists with: the synthesis of the extracellular matrix, sporulation, reinforcement of the cell wall, activation of the ROS detoxification machinery and production of secondary metabolites. This strategy contributes to defend biofilm cells from competitors. However, floating cells maintain a fermentative metabolic status that ensures a higher aggressiveness against hosts, evidenced by the production of toxins. The maintenance of the two distinct subpopulations is an effective strategy to face different environmental conditions found in the life styles of B. cereus

    Bone metabolism and inflammatory biomarkers in radiographic and non-radiographic axial spondyloarthritis patients: a comprehensive evaluation

    Get PDF
    IntroductionAxial spondyloarthritis (axSpA) is a heterogeneous disease that can be represented by radiographic axSpA (r-axSpA) and non-radiographic axSpA (nr-axSpA). This study aimed to evaluate the relationship between the markers of inflammation and bone turnover in r-axSpA patients and nr-axSpA patients.MethodsA cross-sectional study included 29 r-axSpA patients, 10 nr-axSpA patients, and 20 controls matched for age and sex. Plasma markers related to bone remodeling such as human procollagen type 1 N-terminal propeptide (P1NP), sclerostin, tartrate-resistant acid phosphatase 5b (TRACP5b), receptor activator of nuclear factor kappa B ligand (RANKL), and osteoprotegerin (OPG) were measured by an ELISA kit. A panel of 92 inflammatory molecules was analyzed by proximity extension assay.ResultsR-axSpA patients had decreased plasma levels of P1NP, a marker of bone formation, compared to controls. In addition, r-axSpA patients exhibited decreased plasma levels of sclerostin, an anti-anabolic bone hormone, which would not explain the co-existence of decreased plasma P1NP concentration; however, sclerostin levels could also be influenced by inflammatory processes. Plasma markers of osteoclast activity were similar in all groups. Regarding inflammation-related molecules, nr-axSpA patients showed increased levels of serum interleukin 13 (IL13) as compared with both r-axSpA patients and controls, which may participate in the prevention of inflammation. On the other hand, r-axSpA patients had higher levels of pro-inflammatory molecules compared to controls (i.e., IL6, Oncostatin M, and TNF receptor superfamily member 9). Correlation analysis showed that sclerostin was inversely associated with IL6 and Oncostatin M among others.ConclusionAltogether, different inflammatory profiles may play a role in the development of the skeletal features in axSpA patients particularly related to decreased bone formation. The relationship between sclerostin and inflammation and the protective actions of IL13 could be of relevance in the axSpA pathology, which is a topic for further investigation

    Evolutionary expansion of the Ras switch regulatory module in eukaryotes

    Get PDF
    Ras proteins control many aspects of eukaryotic cell homeostasis by switching between active (GTP-bound) and inactive (GDP-bound) conformations, a reaction catalyzed by GTPase exchange factors (GEF) and GTPase activating proteins (GAP) regulators, respectively. Here, we show that the complexity, measured as number of genes, of the canonical Ras switch genetic system (including Ras, RasGEF, RasGAP and RapGAP families) from 24 eukaryotic organisms is correlated with their genome size and is inversely correlated to their evolutionary distances from humans. Moreover, different gene subfamilies within the Ras switch have contributed unevenly to the module’s expansion and speciation processes during eukaryote evolution. The Ras system remarkably reduced its genetic expansion after the split of the Euteleostomi clade and presently looks practically crystallized in mammals. Supporting evidence points to gene duplication as the predominant mechanism generating functional diversity in the Ras system, stressing the leading role of gene duplication in the Ras family expansion. Domain fusion and alternative splicing are significant sources of functional diversity in the GAP and GEF families but their contribution is limited in the Ras family. An evolutionary model of the Ras system expansion is proposed suggesting an inherent ‘decision making’ topology with the GEF input signal integrated by a homologous molecular mechanism and bifurcation in GAP signaling propagation

    CODA: Accurate Detection of Functional Associations between Proteins in Eukaryotic Genomes Using Domain Fusion

    Get PDF
    Background: In order to understand how biological systems function it is necessary to determine the interactions and associations between proteins. Gene fusion prediction is one approach to detection of such functional relationships. Its use is however known to be problematic in higher eukaryotic genomes due to the presence of large homologous domain families. Here we introduce CODA (Co-Occurrence of Domains Analysis), a method to predict functional associations based on the gene fusion idiom.Methodology/Principal Findings: We apply a novel scoring scheme which takes account of the genome-specific size of homologous domain families involved in fusion to improve accuracy in predicting functional associations. We show that CODA is able to accurately predict functional similarities in human with comparison to state-of-the-art methods and show that different methods can be complementary. CODA is used to produce evidence that a currently uncharacterised human protein may be involved in pathways related to depression and that another is involved in DNA replication.Conclusions/Significance: The relative performance of different gene fusion methodologies has not previously been explored. We find that they are largely complementary, with different methods being more or less appropriate in different genomes. Our method is the only one currently available for download and can be run on an arbitrary dataset by the user. The CODA software and datasets are freely available from ftp://ftp.biochem.ucl.ac.uk/pub/gene3d_data/v6.1.0/CODA/. Predictions are also available via web services from http://funcnet.eu/

    Advancing in Schaaf-Yang syndrome pathophysiology: from bedside to subcellular analyses of truncated MAGEL2

    Full text link
    Background Schaaf-Yang syndrome (SYS) is caused by truncating mutations in MAGEL2, mapping to the Prader-Willi region (15q11-q13), with an observed phenotype partially overlapping that of Prader-Willi syndrome. MAGEL2 plays a role in retrograde transport and protein recycling regulation. Our aim is to contribute to the characterisation of SYS pathophysiology at clinical, genetic and molecular levels. Methods We performed an extensive phenotypic and mutational revision of previously reported patients with SYS. We analysed the secretion levels of amyloid-β 1-40 peptide (Aβ1-40) and performed targeted metabolomic and transcriptomic profiles in fibroblasts of patients with SYS (n=7) compared with controls (n=11). We also transfected cell lines with vectors encoding wild- type (WT) or mutated MAGEL2 to assess stability and subcellular localisation of the truncated protein. Results Functional studies show significantly decreased levels of secreted Aβ1-40 and intracellular glutamine in SYS fibroblasts compared with WT. We also identified 132 differentially expressed genes, including non-coding RNAs (ncRNAs) such as HOTAIR, and many of them related to developmental processes and mitotic mechanisms. The truncated form of MAGEL2 displayed a stability similar to the WT but it was significantly switched to the nucleus, compared with a mainly cytoplasmic distribution of the WT MAGEL2. Based on the updated knowledge, we offer guidelines for the clinical management of patients with SYS. Conclusion A truncated MAGEL2 protein is stable and localises mainly in the nucleus, where it might exert a pathogenic neomorphic effect. Aβ1-40 secretion levels and HOTAIR mRNA levels might be promising biomarkers for SYS. Our findings may improve SYS understanding and clinical management

    Uncovering the Molecular Machinery of the Human Spindle—An Integration of Wet and Dry Systems Biology

    Get PDF
    The mitotic spindle is an essential molecular machine involved in cell division, whose composition has been studied extensively by detailed cellular biology, high-throughput proteomics, and RNA interference experiments. However, because of its dynamic organization and complex regulation it is difficult to obtain a complete description of its molecular composition. We have implemented an integrated computational approach to characterize novel human spindle components and have analysed in detail the individual candidates predicted to be spindle proteins, as well as the network of predicted relations connecting known and putative spindle proteins. The subsequent experimental validation of a number of predicted novel proteins confirmed not only their association with the spindle apparatus but also their role in mitosis. We found that 75% of our tested proteins are localizing to the spindle apparatus compared to a success rate of 35% when expert knowledge alone was used. We compare our results to the previously published MitoCheck study and see that our approach does validate some findings by this consortium. Further, we predict so-called “hidden spindle hub”, proteins whose network of interactions is still poorly characterised by experimental means and which are thought to influence the functionality of the mitotic spindle on a large scale. Our analyses suggest that we are still far from knowing the complete repertoire of functionally important components of the human spindle network. Combining integrated bio-computational approaches and single gene experimental follow-ups could be key to exploring the still hidden regions of the human spindle system

    Finding the “Dark Matter” in Human and Yeast Protein Network Prediction and Modelling

    Get PDF
    Accurate modelling of biological systems requires a deeper and more complete knowledge about the molecular components and their functional associations than we currently have. Traditionally, new knowledge on protein associations generated by experiments has played a central role in systems modelling, in contrast to generally less trusted bio-computational predictions. However, we will not achieve realistic modelling of complex molecular systems if the current experimental designs lead to biased screenings of real protein networks and leave large, functionally important areas poorly characterised. To assess the likelihood of this, we have built comprehensive network models of the yeast and human proteomes by using a meta-statistical integration of diverse computationally predicted protein association datasets. We have compared these predicted networks against combined experimental datasets from seven biological resources at different level of statistical significance. These eukaryotic predicted networks resemble all the topological and noise features of the experimentally inferred networks in both species, and we also show that this observation is not due to random behaviour. In addition, the topology of the predicted networks contains information on true protein associations, beyond the constitutive first order binary predictions. We also observe that most of the reliable predicted protein associations are experimentally uncharacterised in our models, constituting the hidden or “dark matter” of networks by analogy to astronomical systems. Some of this dark matter shows enrichment of particular functions and contains key functional elements of protein networks, such as hubs associated with important functional areas like the regulation of Ras protein signal transduction in human cells. Thus, characterising this large and functionally important dark matter, elusive to established experimental designs, may be crucial for modelling biological systems. In any case, these predictions provide a valuable guide to these experimentally elusive regions
    corecore