115 research outputs found

    Effectiveness of a multidisciplinary BIOPSYCHOSOCIAL intervention for non-specific SUBACUTE low back pain in a working population : a cluster randomized clinical trial

    Get PDF
    BACKGROUND: Low back pain (LBP) is a multifactorial condition with individual and societal impact that affects populations globally. Current guidelines for the treatment of LBP recommend pharmacological and non-pharmacological strategies. The aim of this study was to compare usual clinical practice with the effectiveness of a biopsychosocial multidisciplinary intervention in reducing disability, severity of pain and improving quality of life in a working population of patients with subacute (2-12 weeks), non-specific LBP. METHODS: Longitudinal cluster randomized clinical trial conducted in 39 Primary Health Care Centres (PHCC) of Barcelona, with patients aged 18-65 years (n = 501; control group = 239; 26 PHCC, intervention group = 262; 13 PHCC). The control group received usual clinical care. The intervention group received usual clinical care plus a biopsychosocial multidisciplinary intervention, which consisted of physiotherapy, cognitive-behavioural therapy and medication. The main outcomes were changes in the Roland Morris Disability Questionnaire (RMDQ), and the minimal clinically important differences. Secondary outcomes were changes in the McGill Pain (MGPQ) and Quality of Life (SF-12) questionnaires. Assessment was conducted at baseline, 3 and 12 months. Analysis was by intention-to-treat and analyst-blinded. Multiple imputations were used. RESULTS: Of the 501 enrolled patients, 421 (84%) provided data at 3 months, and 387 (77.2%) at 12 months. Mean age was 46.8 years (SD: 11.5) and 64.7% were women. In the adjusted analysis of the RMDQ outcome, only the intervention group showed significant changes at 3 months (- 1.33 points, p = 0.005) and at 12 months (- 1.11 points, p = 0.027), but minimal clinically important difference were detected in both groups. In the adjusted analysis of the RMDQ outcome, the intervention group improvement more than the control group at 3 months (- 1.33 points, p = 0.005) and at 12 months (- 1.11 points, p = 0.027). The intervention group presented a significant difference. Both groups presented a minimal clinically important difference, but more difference in the intervention group. The intervention group presented significant differences in the MGPQ scales of current pain intensity and VAS scores at 3 months. No statistically significant differences were found in the physical and mental domains of the SF-12. CONCLUSIONS: A multidisciplinary biopsychosocial intervention in a working population with non-specific subacute LBP has a small positive impact on disability, and on the level of pain, mainly at short-term, but no difference on quality of life. TRIAL REGISTRATION: ISRCTN21392091 (17 oct 2018) (Prospectively registred

    The Mars Environmental Dynamics Analyzer, MEDA: a suite of environmental sensors for the Mars 2020 mission

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in Space science reviews. The final authenticated version is available online at: http://dx.doi.org/10.1007/s11214-021-00816-9NASA’s Mars 2020 (M2020) rover mission includes a suite of sensors to monitor current environmental conditions near the surface of Mars and to constrain bulk aerosol properties from changes in atmospheric radiation at the surface. The Mars Environmental Dynamics Analyzer (MEDA) consists of a set of meteorological sensors including wind sensor, a barometer, a relative humidity sensor, a set of 5 thermocouples to measure atmospheric temperature at ~1.5 m and ~0.5 m above the surface, a set of thermopiles to characterize the thermal IR brightness temperatures of the surface and the lower atmosphere. MEDA adds a radiation and dust sensor to monitor the optical atmospheric properties that can be used to infer bulk aerosol physical properties such as particle size distribution, non-sphericity, and concentration. The MEDA package and its scientific purpose are described in this document as well as how it responded to the calibration tests and how it helps prepare for the human exploration of Mars. A comparison is also presented to previous environmental monitoring payloads landed on Mars on the Viking, Pathfinder, Phoenix, MSL, and InSight spacecraft.Peer ReviewedPostprint (published version

    Effect of the concentration of the nutrient solution on the nutrient content of chrysanthemum (Dendranthema grandiflorum (Ramat.)

    Get PDF
    Objective: Evaluate the nutrient concentration at the foliar level of chrysanthemums grown in tezontle sand using three concentrations of the Steiner Universal Nutrient Solution. Design/Methodology/Approach: A completely randomized design was used, each treatment represented a concentration of the nutrient solution and each concentration had 11 repetitions, the study variables were: foliar concentration of nutrients: N, P, K, Ca, Mg and S, plant height (AP), stem diameter (DT), number of leaves (NH), flower diameter (DF), fresh weight (PF) and dry weight (PS). Results: The results showed this order of extraction K>N>Ca>P>Mg>S, for all concentrations, the foliar N content was low in the three treatments (<3.35%), the P was found in high concentrations. (>0.63%), K was higher in the 100% concentration treatment, Mg (>0.44%) was in sufficient levels, in Ca the 100% concentration had greater absorption and finally the S content was only the adequate in the concentration of 100 %, in the morphological variables there were no significant differences. Limitations of the study/Implications: High temperatures helped the proliferation of pests; therefore, it would be good to have a better control of temperatures inside the greenhouse. Findings/Conclusions: Therefore, using different concentrations of the nutrient solution in chrysanthemums grown in tezontle sand affects the nutrient content at the foliar level but not necessarily its morphology

    Monitoring of hepatitis E virus in zoo animals from Spain, 2007–2021

    Get PDF
    Hepatitis E virus (HEV, family Hepeviridae) is an important emerging and zoonotic pathogen. In recent decades, the number of human cases of zoonotic hepatitis E has increased considerably in industrialized countries and HEV has been detected in an expanding range of mammal species. Although domestic pigs and wild boar are considered the main reservoirs of zoonotic HEV genotypes, the role of other susceptible animals in the epidemiology of the virus is still poorly understood. A large-scale, long-term study was carried out (1) to assess HEV exposure in captive zoo animals in Spain and (2) to determine the dynamics of seropositivity in individuals that were sampled longitudinally during the study period. Between 2007 and 2021, serum samples from 425 zoo animals belonging to 109 animal species (including artiodactyls, carnivores, perissodactyls, proboscideans and rodents) were collected from 11 different zoological parks in Spain. Forty-six of these animals at seven of these zoos were also longitudinally sampled. Anti-HEV antibodies were detected in 36 (8.5%; 95% CI: 5.8–11.1) of 425 sampled zoo animals. Specific antibodies against HEV-3 and HEV-C1 antigens were confirmed in ELISA-positive animals using western blot assay. Two of 46 longitudinally surveyed animals seroconverted during the study period. Seropositivity was significantly higher in carnivores and perissodactyls than in artiodactyls, and also during the period 2012–2016 compared with 2007–2011. HEV RNA was not detected in any of the 262 animals that could be tested by RT-PCR. To the best of the author's knowledge, this is the first large-scale, long-term surveillance on HEV in different orders of zoo mammals. Our results indicate exposure to HEV-3 and HEV-C1 in zoo animals in Spain and confirm a widespread but not homogeneous spatiotemporal circulation of HEV in captive species in this country. Further studies are required to determine the role of zoo species, particularly carnivores and perissodactyls, in the epidemiology of HEV and to clarify the origins of infection in zoological parks

    Collagen XIX Alpha 1 improves prognosis in amyotrophic lateral sclerosis

    Get PDF
    The identification of more reliable diagnostic or prognostic biomarkers in age-related neurodegenerative diseases, such as Amyotrophic Lateral Sclerosis (ALS), is urgently needed. The objective in this study was to identify more reliable prognostic biomarkers of ALS mirroring neurodegeneration that could be of help in clinical trials. A total of 268 participants from three cohorts were included in this study. The muscle and blood cohorts were analyzed in two cross-sectional studies, while the serial blood cohort was analyzed in a longitudinal study at 6-monthly intervals. Fifteen target genes and fourteen proteins involved in muscle physiology and differentiation, metabolic processes and neuromuscular junction dismantlement were studied in the three cohorts. In the muscle biopsy cohort, the risk for a higher mortality in an ALS patient that showed high Collagen type XIX, alpha 1 (COL19A1) protein levels and a fast progression of the disease was 70.5% (P < 0.05), while in the blood cohort, this risk was 20% (P < 0.01). In the serial blood cohort, the linear mixed model analysis showed a significant association between increasing COL19A1 gene levels along disease progression and a faster progression during the follow-up period of 24 months (P < 0.05). Additionally, higher COL19A1 levels and a faster progression increased 17.9% the mortality risk (P < 0.01). We provide new evidence that COL19A1 can be considered a prognostic biomarker that could help the selection of homogeneous groups of patients for upcoming clinical trial and may be pointed out as a promising therapeutic target in ALS

    Dominant Negative Mutants of Bacillus thuringiensis Cry1Ab Toxin Function as Anti-Toxins: Demonstration of the Role of Oligomerization in Toxicity

    Get PDF
    BACKGROUND:Bacillus thuringiensis Cry toxins, that are used worldwide in insect control, kill insects by a mechanism that depends on their ability to form oligomeric pores that insert into the insect-midgut cells. These toxins are being used worldwide in transgenic plants or spray to control insect pests in agriculture. However, a major concern has been the possible effects of these insecticidal proteins on non-target organisms mainly in ecosystems adjacent to agricultural fields. METHODOLOGY/PRINCIPAL FINDINGS:We isolated and characterized 11 non-toxic mutants of Cry1Ab toxin affected in different steps of the mechanism of action namely binding to receptors, oligomerization and pore-formation. These mutant toxins were analyzed for their capacity to block wild type toxin activity, presenting a dominant negative phenotype. The dominant negative phenotype was analyzed at two levels, in vivo by toxicity bioassays against susceptible Manduca sexta larvae and in vitro by pore formation activity in black lipid bilayers. We demonstrate that some mutations located in helix alpha-4 completely block the wild type toxin activity at sub-stoichiometric level confirming a dominant negative phenotype, thereby functioning as potent antitoxins. CONCLUSIONS/SIGNIFICANCE:This is the first reported case of a Cry toxin dominant inhibitor. These data demonstrate that oligomerization is a fundamental step in Cry toxin action and represent a potential mechanism to protect special ecosystems from the possible effect of Cry toxins on non-target organisms

    Disrupted mitochondrial and metabolic plasticity underlie comorbidity between age-Related and degenerative disorders as parkinson disease and type 2 diabetes mellitus.

    Full text link
    Idiopathic Parkinson's disease (iPD) and type 2 diabetes mellitus (T2DM) are chronic, multisystemic, and degenerative diseases associated with aging, with eventual epidemiological co-morbidity and overlap in molecular basis. This study aims to explore if metabolic and mitochondrial alterations underlie the previously reported epidemiologic and clinical co-morbidity from a molecular level. To evaluate the adaptation of iPD to a simulated pre-diabetogenic state, we exposed primary cultured fibroblasts from iPD patients and controls to standard (5 mM) and high (25 mM) glucose concentrations to further characterize metabolic and mitochondrial resilience. iPD fibroblasts showed increased organic and amino acid levels related to mitochondrial metabolism with respect to controls, and these differences were enhanced in high glucose conditions (citric, suberic, and sebacic acids levels increased, as well as alanine, glutamate, aspartate, arginine, and ornithine amino acids; p-values between 0.001 and 0.05). The accumulation of metabolites in iPD fibroblasts was associated with (and probably due to) the concomitant mitochondrial dysfunction observed at enzymatic, oxidative, respiratory, and morphologic level. Metabolic and mitochondrial plasticity of controls was not observed in iPD fibroblasts, which were unable to adapt to different glucose conditions. Impaired metabolism and mitochondrial activity in iPD may limit energy supply for cell survival. Moreover, reduced capacity to adapt to disrupted glucose balance characteristic of T2DM may underlay the co-morbidity between both diseases. Conclusions: Fibroblasts from iPD patients showed mitochondrial impairment, resulting in the accumulation of organic and amino acids related to mitochondrial metabolism, especially when exposed to high glucose. Mitochondrial and metabolic defects down warding cell plasticity to adapt to changing glucose bioavailability may explain the comorbidity between iPD and T2DM

    Unveiling a novel transient druggable pocket in BACE-1 through molecular simulations: conformational analysis and binding mode of multisite inhibitors

    Get PDF
    The critical role of BACE-1 in the formation of neurotoxic ß-amyloid peptides in the brain makes it an attractive target for an efficacious treatment of Alzheimer’s disease. However, the development of clinically useful BACE-1 inhibitors has proven to be extremely challeng- ing. In this study we examine the binding mode of a novel potent inhibitor (compound 1, with IC50 80 nM) designed by synergistic combination of two fragments—huprine and rhein— that individually are endowed with very low activity against BACE-1. Examination of crystal structures reveals no appropriate binding site large enough to accommodate 1. Therefore we have examined the conformational flexibility of BACE-1 through extended molecular dynamics simulations, paying attention to the highly flexible region shaped by loops 8–14, 154–169 and 307–318. The analysis of the protein dynamics, together with studies of pocket druggability, has allowed us to detect the transient formation of a secondary binding site, which contains Arg307 as a key residue for the interaction with small molecules, at the edge of the catalytic cleft. The formation of this druggable “floppy” pocket would enable the bind- ing of multisite inhibitors targeting both catalytic and secondary sites. Molecular dynamics simulations of BACE-1 bound to huprine-rhein hybrid compounds support the feasibility of this hypothesis. The results provide a basis to explain the high inhibitory potency of the two enantiomeric forms of 1, together with the large dependence on the length of the oligo- methylenic linker. Furthermore, the multisite hypothesis has allowed us to rationalize the inhibitory potency of a series of tacrine-chromene hybrid compounds, specifically regarding the apparent lack of sensitivity of the inhibition constant to the chemical modifications intro- duced in the chromene unit. Overall, these findings pave the way for the exploration of novel functionalities in the design of optimized BACE-1 multisite inhibitors
    • 

    corecore