14 research outputs found

    HI scaling relations of galaxies in the environment of HI-rich and control galaxies observed by the Bluedisk project

    Full text link
    Our work is based on the "Bluedisk" project, a program to map the neutral gas in a sample of 25 HI-rich spirals and a similar number of control galaxies with the Westerbork Synthesis Radio Telescope (WSRT). In this paper we focus on the HI properties of the galaxies in the environment of our targeted galaxies. In total, we extract 65 galaxies from the WSRT cubes with stellar masses between 108M⊙10^8M_{\odot} and 1011M⊙10^{11}M_{\odot}. Most of these galaxies are located on the same HI mass-size relation and "HI-plane" as normal spiral galaxies. We find that companions around HI-rich galaxies tend to be HI-rich as well and to have larger R90,HI/R50,HI. This suggests a scenario of "HI conformity", similar to the colour conformity found by Weinmann et al. (2006): galaxies tend to adopt the HI properties of their neighbours. We visually inspect the outliers from the HI mass-size relation and galaxies which are offset from the HI plane and find that they show morphological and kinematical signatures of recent interactions with their environment. We speculate that these outliers have been disturbed by tidal or ram-pressure stripping processes, or in a few cases, by accretion events.Comment: 16 pages, 12 figures; accepted for publication in MNRA

    An HI View of Galaxy Conformity: HI-rich Environment around HI-excess Galaxies

    Get PDF
    Using data taken as part of the Bluedisk project we study the connection between neutral hydrogen (HI) in the environment of spiral galaxies and that in the galaxies themselves. We measure the total HI mass present in the environment in a statistical way by studying the distribution of noise peaks in the HI data cubes obtained for 40 galaxies observed with WSRT. We find that galaxies whose HI mass fraction is high relative to standard scaling relations have an excess HI mass in the surrounding environment as well. Gas in the environment consists of gas clumps which are individually below the detection limit of our HI data. These clumps may be hosted by small satellite galaxies and\or be the high-density peaks of a more diffuse gas distribution in the inter-galactic medium. We interpret this result as an indication for a picture in which the HI-rich central galaxies accrete gas from an extended gas reservoir present in their environment.Comment: 15 pages, 13 figures. Accepted for publication in MNRA

    The Sudden Death of the Nearest Quasar

    Get PDF
    Galaxy formation is significantly modulated by energy output from supermassive black holes at the centers of galaxies which grow in highly efficient luminous quasar phases. The timescale on which black holes transition into and out of such phases is, however, unknown. We present the first measurement of the shutdown timescale for an individual quasar using X-ray observations of the nearby galaxy IC 2497, which hosted a luminous quasar no more than 70,000 years ago that is still seen as a light echo in `Hanny's Voorwerp', but whose present-day radiative output is lower by at least 2 and more likely by over 4 orders of magnitude. This extremely rapid shutdown provides new insights into the physics of accretion in supermassive black holes, and may signal a transition of the accretion disk to a radiatively inefficient state.Comment: 4 pages, 2 figures. Astrophysical Journal Letters, in pres

    The HI Tully-Fisher Relation of Early-Type Galaxies

    Get PDF
    We study the HI K-band Tully-Fisher relation and the baryonic Tully-Fisher relation for a sample of 16 early-type galaxies, taken from the ATLAS3D sample, which all have very regular HI disks extending well beyond the optical body (> 5 R_eff). We use the kinematics of these disks to estimate the circular velocity at large radii for these galaxies. We find that the Tully-Fisher relation for our early-type galaxies is offset by about 0.5-0.7 magnitudes from the relation for spiral galaxies. The residuals with respect to the spiral Tully-Fisher relation correlate with estimates of the stellar mass-to-light ratio, suggesting that the offset between the relations is mainly driven by differences in stellar populations. We also observe a small offset between our Tully-Fisher relation with the relation derived for the ATLAS3D sample based on CO data representing the galaxies' inner regions (< 1 R_eff). This indicates that the circular velocities at large radii are systematically 10% lower than those near 0.5-1 R_eff, in line with recent determinations of the shape of the mass profile of early-type galaxies. The baryonic Tully-Fisher relation of our sample is distinctly tighter than the standard one, in particular when using mass-to-light ratios based on dynamical models of the stellar kinematics. We find that the early-type galaxies fall on the spiral baryonic Tully-Fisher relation if one assumes M/L_K = 0.54 M_sun/L_sun for the stellar populations of the spirals, a value similar to that found by recent studies of the dynamics of spiral galaxies. Such a mass-to-light ratio for spiral galaxies would imply that their disks are 60-70% of maximal. Our analysis increases the range of galaxy morphologies for which the baryonic Tully-Fisher relations holds, strengthening previous claims that it is a more fundamental scaling relation than the classical Tully-Fisher relation.Comment: Accepted for publication in Astronomy & Astrophysic

    Searching for axion dark matter with MeerKAT Radio Telescope

    Full text link
    Axions provide a natural and well-motivated dark matter candidate, with the capability to convert directly to photons in the presence of an electromagnetic field. A particularly compelling observational target is the conversion of dark matter axions into photons in the magnetospheres of highly magnetised neutron stars, which is expected to produce a narrow spectral peak centred at the frequency of the axion mass. We point the MeerKAT radio telescope towards the isolated neutron star J0806.4−-4123 for 1010-hours of observation and obtain the radio spectra in the frequency range 769769-10511051 MHz. By modelling the conversion process of infalling axion dark matter (DM), we then compare these spectra to theoretical expectations for a given choice of axion parameters. Whilst finding no signal above 5σ5\sigma in the data, we provide a unique constraint on the Primakoff coupling of axion DM, gaγγ≲9.3×10−12 GeV−1g_{{\rm a}\gamma\gamma}\lesssim 9.3 \times 10^{-12}\,{\rm GeV}^{-1} at the 95%95\% confidence level, in the mass range 3.183.18-4.35 μ4.35\,\mueV. This result serves the strongest constraint in the axion mass range 4.204.20-4.35 μ4.35\,\mueV.Comment: 6 pages, 3 figures, accepted by Physical Review

    Connecting MeerKAT radio continuum properties to GAMA optical emission-line and WISE mid-infrared activity

    Full text link
    The identification of AGN in large surveys has been hampered by seemingly discordant classifications arising from differing diagnostic methods, usually tracing distinct processes specific to a particular wavelength regime. However, as shown in Yao et al. (2020), the combination of optical emission line measurements and mid-infrared photometry can be used to optimise the discrimination capability between AGN and star formation activity. In this paper we test our new classification scheme by combining the existing GAMA-WISE data with high-quality MeerKAT radio continuum data covering 8 deg2^2 of the GAMA G23 region. Using this sample of 1 841 galaxies (z < 0.25), we investigate the total infrared (derived from 12μ\mum) to radio luminosity ratio, q(TIR), and its relationship to optical-infrared AGN and star-forming (SF) classifications. We find that while q(TIR) is efficient at detecting AGN activity in massive galaxies generally appearing quiescent in the infrared, it becomes less reliable for cases where the emission from star formation in the host galaxy is dominant. However, we find that the q(TIR) can identify up to 70 % more AGNs not discernible at optical and/or infrared wavelengths. The median q(TIR) of our SF sample is 2.57 ±\pm 0.23 consistent with previous local universe estimates

    The Bluedisks project, a study of unusually H I-rich galaxies - I. H I sizes and morphology

    Get PDF
    <p>We introduce the 'Bluedisk' project, a large programme at the Westerbork Synthesis Radio Telescope that has mapped the H i in a sample of 23 nearby galaxies with unusually high H i mass fractions, along with a similar-sized sample of control galaxies. This paper presents the sample selection, observational set-up, data reduction strategy and a first analysis of the sizes and structural properties of the H i discs. We find that the H i-rich galaxies lie on the same H i mass versus H i size relation as normal spiral galaxies, extending it to total H i masses of 2 x 10(10) M-circle dot and radii R1 of similar to 100 kpc. The H i-rich galaxies have significantly larger values of H i-to-optical size ratio and more clumpy H i discs than those of normal spirals. There is no evidence that the discs of H i-rich galaxies are more disturbed. In fact, the centre of the H i distribution corresponds more closely with the centre of the optical light in the H i-rich galaxies than in the controls. All these results argue against a scenario in which new gas has been brought in by mergers. It is possible that they may be more consistent with cooling from a surrounding quasi-static halo of warm/hot gas.</p>

    MeerKLASS: MeerKAT Large Area Synoptic Survey

    Full text link
    We discuss the ground-breaking science that will be possible with a wide area survey, using the MeerKAT telescope, known as MeerKLASS (MeerKAT Large Area Synoptic Survey). The current specifications of MeerKAT make it a great fit for science applications that require large survey speeds but not necessarily high angular resolutions. In particular, for cosmology, a large survey over ∼4,000 deg2\sim 4,000 \, {\rm deg}^2 for ∼4,000\sim 4,000 hours will potentially provide the first ever measurements of the baryon acoustic oscillations using the 21cm intensity mapping technique, with enough accuracy to impose constraints on the nature of dark energy. The combination with multi-wavelength data will give unique additional information, such as exquisite constraints on primordial non-Gaussianity using the multi-tracer technique, as well as a better handle on foregrounds and systematics. Such a wide survey with MeerKAT is also a great match for HI galaxy studies, providing unrivalled statistics in the pre-SKA era for galaxies resolved in the HI emission line beyond local structures at z > 0.01. It will also produce a large continuum galaxy sample down to a depth of about 5\,μ\muJy in L-band, which is quite unique over such large areas and will allow studies of the large-scale structure of the Universe out to high redshifts, complementing the galaxy HI survey to form a transformational multi-wavelength approach to study galaxy dynamics and evolution. Finally, the same survey will supply unique information for a range of other science applications, including a large statistical investigation of galaxy clusters as well as produce a rotation measure map across a huge swathe of the sky. The MeerKLASS survey will be a crucial step on the road to using SKA1-MID for cosmological applications and other commensal surveys, as described in the top priority SKA key science projects (abridged).Comment: Larger version of the paper submitted to the Proceedings of Science, "MeerKAT Science: On the Pathway to the SKA", Stellenbosch, 25-27 May 201

    MIGHTEE-\HI: Possible interactions with the galaxy NGC~895

    Get PDF
    The transformation and evolution of a galaxy is strongly influenced by interactions with its environment. Neutral hydrogen (\HI) is an excellent way to trace these interactions. Here, we present \HI\ observations of the spiral galaxy NGC~895, which was previously thought to be isolated. High-sensitivity \HI\ observations from the MeerKAT large survey project MIGHTEE reveal possible interaction features, such as extended spiral arms, and the two newly discovered \HI\ companions, that drive us to change the narrative that it is an isolated galaxy. We combine these observations with deep optical images from the Hyper Suprime Camera to show an absence of tidal debris between NGC 895 and its companions. We do find an excess of light in the outer parts of the companion galaxy MGTH_\_J022138.1-052631 which could be an indication of external perturbation and thus possible sign of interactions. Our analysis shows that NGC~895 is an actively star-forming galaxy with a SFR of 1.75±0.09[M⊙/yr]\mathrm{1.75 \pm 0.09 [M_{\odot}/yr]}, a value typical for high stellar mass galaxies on the star forming main sequence. It is reasonable to state that different mechanisms may have contributed to the observed features in NGC~895 and this emphasizes the need to revisit the target with more detailed observations. Our work shows the high potential and synergy of using state-of-the-art data in both \HI\ and optical to reveal a more complete picture of galaxy environments.Comment: 14 pages, 10 figures. Accepted for publication in MNRA
    corecore