98 research outputs found

    The benefits of increasing resolution in global and regional climate simulations for European climate extremes

    Get PDF
    Many climate extremes, including heatwaves and heavy precipitation events, are projected to worsen under climate change, with important impacts for society. Future projections required for adaptation are often based on climate model simulations. Given finite resources, trade-offs must be made concerning model resolution, ensemble size, and level of model complexity. Here we focus on the resolution component. A given resolution can be achieved over a region using either global climate models (GCMs) or at lower cost using regional climate models (RCMs) that dynamically downscale coarser GCMs. Both approaches to increasing resolution may better capture small-scale processes and features (downscaling effect), but increased GCM resolution may also improve the representation of the large-scale atmospheric circulation (upscaling effect). The size of this upscaling effect is therefore important for deciding modelling strategies. Here we evaluate the benefits of increased model resolution for both global and regional climate models for simulating temperature, precipitation, and wind extremes over Europe at resolutions that could currently be realistically used for coordinated sets of climate projections at the pan-European scale. First we examine the benefits of regional downscaling by comparing EURO-CORDEX simulations at 12.5 and 50 km resolution to their coarser CMIP5 driving simulations. Secondly, we compare global-scale HadGEM3-A simulations at three resolutions (130, 60, and 25 km). Finally, we separate out resolution-dependent differences for HadGEM3-A into downscaling and upscaling components using a circulation analogue technique. Results suggest limited benefits of increased resolution for heatwaves, except in reducing hot biases over mountainous regions. Precipitation extremes are sensitive to resolution, particularly over complex orography, with larger totals and heavier tails of the distribution at higher resolution, particularly in the CORDEX vs. CMIP5 analysis. CMIP5 models underestimate precipitation extremes, whilst CORDEX simulations overestimate compared to E-OBS, particularly at 12.5 km, but results are sensitive to the observational dataset used, with the MESAN reanalysis giving higher totals and heavier tails than E-OBS. Wind extremes are somewhat stronger and heavier tailed at higher resolution, except in coastal regions where large coastal grid boxes spread strong ocean winds further over land. The circulation analogue analysis suggests that differences with resolution for the HadGEM3-A GCM are primarily due to downscaling effects

    Using the past to constrain the future: how the palaeorecord can improve estimates of global warming

    Full text link
    Climate sensitivity is defined as the change in global mean equilibrium temperature after a doubling of atmospheric CO2 concentration and provides a simple measure of global warming. An early estimate of climate sensitivity, 1.5-4.5{\deg}C, has changed little subsequently, including the latest assessment by the Intergovernmental Panel on Climate Change. The persistence of such large uncertainties in this simple measure casts doubt on our understanding of the mechanisms of climate change and our ability to predict the response of the climate system to future perturbations. This has motivated continued attempts to constrain the range with climate data, alone or in conjunction with models. The majority of studies use data from the instrumental period (post-1850) but recent work has made use of information about the large climate changes experienced in the geological past. In this review, we first outline approaches that estimate climate sensitivity using instrumental climate observations and then summarise attempts to use the record of climate change on geological timescales. We examine the limitations of these studies and suggest ways in which the power of the palaeoclimate record could be better used to reduce uncertainties in our predictions of climate sensitivity.Comment: The final, definitive version of this paper has been published in Progress in Physical Geography, 31(5), 2007 by SAGE Publications Ltd, All rights reserved. \c{opyright} 2007 Edwards, Crucifix and Harriso

    Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5

    Get PDF
    We present the global general circulation model IPSL-CM5 developed to study the long-term response of the climate system to natural and anthropogenic forcings as part of the 5th Phase of the Coupled Model Intercomparison Project (CMIP5). This model includes an interactive carbon cycle, a representation of tropospheric and stratospheric chemistry, and a comprehensive representation of aerosols. As it represents the principal dynamical, physical, and bio-geochemical processes relevant to the climate system, it may be referred to as an Earth System Model. However, the IPSL-CM5 model may be used in a multitude of configurations associated with different boundary conditions and with a range of complexities in terms of processes and interactions. This paper presents an overview of the different model components and explains how they were coupled and used to simulate historical climate changes over the past 150 years and different scenarios of future climate change. A single version of the IPSL-CM5 model (IPSL-CM5A-LR) was used to provide climate projections associated with different socio-economic scenarios, including the different Representative Concentration Pathways considered by CMIP5 and several scenarios from the Special Report on Emission Scenarios considered by CMIP3. Results suggest that the magnitude of global warming projections primarily depends on the socio-economic scenario considered, that there is potential for an aggressive mitigation policy to limit global warming to about two degrees, and that the behavior of some components of the climate system such as the Arctic sea ice and the Atlantic Meridional Overturning Circulation may change drastically by the end of the twenty-first century in the case of a no climate policy scenario. Although the magnitude of regional temperature and precipitation changes depends fairly linearly on the magnitude of the projected global warming (and thus on the scenario considered), the geographical pattern of these changes is strikingly similar for the different scenarios. The representation of atmospheric physical processes in the model is shown to strongly influence the simulated climate variability and both the magnitude and pattern of the projected climate changes
    • …
    corecore