18 research outputs found

    Comportement moteur induit visuellement et spontané chez la larve du poisson zèbre

    Get PDF
    Behavior is often conceived as resulting from a stimulus-response association. Under this paradigm, understanding the nervous system is reduced to finding the relation between a sensory input and a motor output. Yet, in naturally behaving animals, motor actions influence sensory perceptions just as much as the other way around. Animals are continuously relying on sensory feedback to adjust motor commands. On the other hand, behavior is not only induced by the sensory environment, but can be generated by the brain's rich internal dynamics. My goal is to understand the sensory-motor dialogue by monitoring large brain regions, yet, with a single-neuron resolution. To tackle this question, I have used zebrafish larva to study visually induced and internally driven motor behaviors. Zebrafish larvae have a small and transparent body. These features enable using large-scale optical methods, such as selective plane illumination microscopy (SPIM), to record brain dynamics. In order to study goal-driven navigation in conditions compatible with imaging, I developed a visual virtual reality system for zebrafish larva. The visual feedback can be chosen to be similar to what the animal experiences in natural conditions. Alternatively, alteration of the visual feedback can be used to study how the brain adapts to perturbations. For this purpose, I first generated a library of free-swimming behaviors from which I learned the relationship between the trajectory of the larva and the shape of its tail. I then use this technique to infer the intended displacements of head-fixed larvae. The visual environment was updated accordingly. In the virtual environment, larvae were capable of maintaining the proper speed and orientation in the presence of whole-field motion and produced fine changes in orientation and position required to capture virtual preys. I demonstrate the sensitivity of larvae to visual feedback by updating the visual world only after the discrete swimming episodes. This feedback perturbation induced a decay in the performance of prey capture behavior, suggesting that larva rely on real-time visual feedback during swimming. Behavior can also be induced by the internal dynamics of the brain. In the absence of salient sensory cues, zebrafish larva spontaneously produces stereotypical tail movements, similar to those produced during goal-driven navigation. After having developed a new method to classify tail movements, I analyzed the sequence of spontaneously generated tail movements. The latter switched between period of quasi-rhythmic activity and long episodes of rest. Moreover, consecutive movements were more similar when executed at short time intervals (~10s). In order to study the mechanisms responsible for the spontaneous decisions to move, I coupled SPIM to tail movement analysis. Using dimensionality reduction, I identified clusters of neurons predicting the direction of spontaneous turn movements but not their timings. This Preliminary result suggests that distinct pathways could be responsible for the timing (when) and the selection (what) of spontaneous actions. Together, the results shed light on the role of feedback and internal dynamics in shaping behaviors and open the avenue for investigating complex sensorimotor process in simple systems.Le comportement animal est souvent conçu comme résultant d'une association entre un stimulus et une réponse. Selon cette vision, comprendre le cerveau revient à dénouer les liens entre les entrées sensorielles et les sorties motrices. Toutefois, dans des conditions naturelles, l'influence entre l'action motrice et la perception sensorielle est réciproque. Les animaux utilisent constamment les rétroactions sensorielles causées par leurs actions pour ajuster les commandes motrices. Par ailleurs, le comportement n'est pas seulement une réponse à l'environnement sensoriel mais peut être généré par l'activité endogène du cerveau. Afin de comprendre le dialogue sensorimoteur en observant de larges régions cérébrales à une résolution cellulaire, j'ai étudié les comportements induits et spontanés chez la larve du poisson-zèbre. Les atouts de la larve du poisson zèbre sont sa petit taille et sa transparence. On peut utiliser des méthodes d'imagerie fonctionnelle optique, comme la microscopie par nappe laser, afin d'enregistrer l'activité dans une large portion des neurones. Afin d'étudier le comportement de navigation chez la larve dans des conditions compatibles avec l'observation du cerveau, j'ai développé un système de réalité virtuelle visuelle pour la larve du poisson zèbre. L'environnement visuel est mis à jour en fonction des mouvements du poisson. Cette rétroaction peut être choisie comme étant similaire à la rétroaction visuelle que le poisson expérimente en nage libre. En modifiant la rétroaction visuelle naturelle, on peut étudier la manière dont la larve s'adapte aux perturbations. Dans cette optique, j'ai d'abord généré une librairie de mouvements de nage libre. A partir de celle-ci, j'ai extrait la relation entre la trajectoire de la larve et la cinématique de ses mouvements de queue. Cette relation permet de décoder les intentions de déplacements chez une larve dont la tête est restreinte dans un gel et de mettre à jour un environnement visuel selon ses mouvements de queue. Dans un environnement virtuel, la larve parvient à contrôler son orientation et sa vitesse afin de suivre un mouvement d'ensemble ou bien à générer une séquence de mouvements nécessaires à atteindre une cible mobile. Lorsque la rétroaction visuelle n'est pas mise à jour continuellement mais à la fin de chaque mouvement, on observe que les mouvements sont alors plus longs. Cette faible perturbation réduit significativement le succès des déplacements du poisson vers des cibles virtuelles. Le comportement peut aussi résulter de l'activité endogène du cerveau. En absence de stimulus externe, la larve produit des mouvements stéréotypés similaires à ceux produits lorsqu'elle navigue en réponse à un stimulus. Après avoir établit une nouvelle méthode de classification des mouvements de queue, j'ai analysé la séquence des mouvements générés spontanément. Ces séquences sont composées de successions quasi rythmiques qui alternent avec de longues périodes de repos. Les mouvements consécutifs sont davantage similaires lorsqu'ils s’enchaînent rapidement (~10s). Afin d'étudier les mécanismes neuronaux responsables de la décision d'effectuer un mouvement spontané, j'ai couplé l’imagerie par nappe laser à l'analyse des mouvements. Des résultats préliminaires mettent en évidence des groupes de neurones dont l'activité prédit la direction des mouvements des virages. Deux groupes repartis bilatéralement oscillent en opposition de phase et l'état de cet oscillateur avant un mouvement prédit sa direction. Les neurones responsables de la décision du type de mouvement à effectuer spontanément sont différents des neurones qui contrôlent le timing de leur déclenchement. Ensemble, ces résultats éclairent les processus de rétroaction et de dynamique interne qui façonnent le comportement et ouvre la voie à l'étude de processus sensorimoteurs complexes dans des systèmes simples

    Sensorimotor Transformations in the Zebrafish Auditory System

    Get PDF
    Organisms use their sensory systems to acquire information from their environment and integrate this information to produce relevant behaviors. Nevertheless, how sensory information is converted into adequate motor patterns in the brain remains an open question. Here, we addressed this question using two-photon and light-sheet calcium imaging in intact, behaving zebrafish larvae. We monitored neural activity elicited by auditory stimuli while simultaneously recording tail movements. We observed a spatial organization of neural activity according to four different response profiles (frequency tuning curves), suggesting a low-dimensional representation of frequency information, maintained throughout the development of the larvae. Low frequencies (150–450 Hz) were locally processed in the hindbrain and elicited motor behaviors. In contrast, higher frequencies (900–1,000 Hz) rarely induced motor behaviors and were also represented in the midbrain. Finally, we found that the sensorimotor transformations in the zebrafish auditory system are a continuous and gradual process that involves the temporal integration of the sensory response in order to generate a motor behavior.Fil: Privat, Martin. Inserm; Francia. Centre National de la Recherche Scientifique; FranciaFil: Romano, Sebastián Alejo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación en Biomedicina de Buenos Aires - Instituto Partner de la Sociedad Max Planck; ArgentinaFil: Pietri, Thomas. Centre National de la Recherche Scientifique; Francia. Inserm; FranciaFil: Jouary, Adrien. Champalimaud Centre For The Unknown; Portugal. Inserm; Francia. Centre National de la Recherche Scientifique; FranciaFil: Boulanger Weill, Jonathan. Centre National de la Recherche Scientifique; Francia. Inserm; FranciaFil: Elbaz, Nicolas. Inserm; Francia. Centre National de la Recherche Scientifique; FranciaFil: Duchemin, Auriane. Centre National de la Recherche Scientifique; Francia. Inserm; FranciaFil: Soares, Daphne. New Jersey Institute of Technology; Estados UnidosFil: Sumbre, Germán. Centre National de la Recherche Scientifique; Francia. Inserm; Franci

    An integrated calcium imaging processing toolbox for the analysis of neuronal population dynamics

    Get PDF
    The development of new imaging and optogenetics techniques to study the dynamics of large neuronal circuits is generating datasets of unprecedented volume and complexity, demanding the development of appropriate analysis tools. We present a comprehensive computational workflow for the analysis of neuronal population calcium dynamics. The toolbox includes newly developed algorithms and interactive tools for image pre-processing and segmentation, estimation of significant single-neuron single-trial signals, mapping event-related neuronal responses, detection of activity-correlated neuronal clusters, exploration of population dynamics, and analysis of clusters' features against surrogate control datasets. The modules are integrated in a modular and versatile processing pipeline, adaptable to different needs. The clustering module is capable of detecting flexible, dynamically activated neuronal assemblies, consistent with the distributed population coding of the brain. We demonstrate the suitability of the toolbox for a variety of calcium imaging datasets. The toolbox open-source code, a step-by-step tutorial and a case study dataset are available at https://github.com/zebrain-lab/Toolbox-Romano-et-al

    Visually induced and spontaneous behavior in the zebrafish larva

    No full text
    Le comportement animal est souvent conçu comme résultant d'une association entre un stimulus et une réponse. Selon cette vision, comprendre le cerveau revient à dénouer les liens entre les entrées sensorielles et les sorties motrices. Toutefois, dans des conditions naturelles, l'influence entre l'action motrice et la perception sensorielle est réciproque. Les animaux utilisent constamment les rétroactions sensorielles causées par leurs actions pour ajuster les commandes motrices. Par ailleurs, le comportement n'est pas seulement une réponse à l'environnement sensoriel mais peut être généré par l'activité endogène du cerveau. Afin de comprendre le dialogue sensorimoteur en observant de larges régions cérébrales à une résolution cellulaire, j'ai étudié les comportements induits et spontanés chez la larve du poisson-zèbre. Les atouts de la larve du poisson zèbre sont sa petit taille et sa transparence. On peut utiliser des méthodes d'imagerie fonctionnelle optique, comme la microscopie par nappe laser, afin d'enregistrer l'activité dans une large portion des neurones. Afin d'étudier le comportement de navigation chez la larve dans des conditions compatibles avec l'observation du cerveau, j'ai développé un système de réalité virtuelle visuelle pour la larve du poisson zèbre. L'environnement visuel est mis à jour en fonction des mouvements du poisson. Cette rétroaction peut être choisie comme étant similaire à la rétroaction visuelle que le poisson expérimente en nage libre. En modifiant la rétroaction visuelle naturelle, on peut étudier la manière dont la larve s'adapte aux perturbations. Dans cette optique, j'ai d'abord généré une librairie de mouvements de nage libre. A partir de celle-ci, j'ai extrait la relation entre la trajectoire de la larve et la cinématique de ses mouvements de queue. Cette relation permet de décoder les intentions de déplacements chez une larve dont la tête est restreinte dans un gel et de mettre à jour un environnement visuel selon ses mouvements de queue. Dans un environnement virtuel, la larve parvient à contrôler son orientation et sa vitesse afin de suivre un mouvement d'ensemble ou bien à générer une séquence de mouvements nécessaires à atteindre une cible mobile. Lorsque la rétroaction visuelle n'est pas mise à jour continuellement mais à la fin de chaque mouvement, on observe que les mouvements sont alors plus longs. Cette faible perturbation réduit significativement le succès des déplacements du poisson vers des cibles virtuelles. Le comportement peut aussi résulter de l'activité endogène du cerveau. En absence de stimulus externe, la larve produit des mouvements stéréotypés similaires à ceux produits lorsqu'elle navigue en réponse à un stimulus. Après avoir établit une nouvelle méthode de classification des mouvements de queue, j'ai analysé la séquence des mouvements générés spontanément. Ces séquences sont composées de successions quasi rythmiques qui alternent avec de longues périodes de repos. Les mouvements consécutifs sont davantage similaires lorsqu'ils s’enchaînent rapidement (~10s). Afin d'étudier les mécanismes neuronaux responsables de la décision d'effectuer un mouvement spontané, j'ai couplé l’imagerie par nappe laser à l'analyse des mouvements. Des résultats préliminaires mettent en évidence des groupes de neurones dont l'activité prédit la direction des mouvements des virages. Deux groupes repartis bilatéralement oscillent en opposition de phase et l'état de cet oscillateur avant un mouvement prédit sa direction. Les neurones responsables de la décision du type de mouvement à effectuer spontanément sont différents des neurones qui contrôlent le timing de leur déclenchement. Ensemble, ces résultats éclairent les processus de rétroaction et de dynamique interne qui façonnent le comportement et ouvre la voie à l'étude de processus sensorimoteurs complexes dans des systèmes simples.Behavior is often conceived as resulting from a stimulus-response association. Under this paradigm, understanding the nervous system is reduced to finding the relation between a sensory input and a motor output. Yet, in naturally behaving animals, motor actions influence sensory perceptions just as much as the other way around. Animals are continuously relying on sensory feedback to adjust motor commands. On the other hand, behavior is not only induced by the sensory environment, but can be generated by the brain's rich internal dynamics. My goal is to understand the sensory-motor dialogue by monitoring large brain regions, yet, with a single-neuron resolution. To tackle this question, I have used zebrafish larva to study visually induced and internally driven motor behaviors. Zebrafish larvae have a small and transparent body. These features enable using large-scale optical methods, such as selective plane illumination microscopy (SPIM), to record brain dynamics. In order to study goal-driven navigation in conditions compatible with imaging, I developed a visual virtual reality system for zebrafish larva. The visual feedback can be chosen to be similar to what the animal experiences in natural conditions. Alternatively, alteration of the visual feedback can be used to study how the brain adapts to perturbations. For this purpose, I first generated a library of free-swimming behaviors from which I learned the relationship between the trajectory of the larva and the shape of its tail. I then use this technique to infer the intended displacements of head-fixed larvae. The visual environment was updated accordingly. In the virtual environment, larvae were capable of maintaining the proper speed and orientation in the presence of whole-field motion and produced fine changes in orientation and position required to capture virtual preys. I demonstrate the sensitivity of larvae to visual feedback by updating the visual world only after the discrete swimming episodes. This feedback perturbation induced a decay in the performance of prey capture behavior, suggesting that larva rely on real-time visual feedback during swimming. Behavior can also be induced by the internal dynamics of the brain. In the absence of salient sensory cues, zebrafish larva spontaneously produces stereotypical tail movements, similar to those produced during goal-driven navigation. After having developed a new method to classify tail movements, I analyzed the sequence of spontaneously generated tail movements. The latter switched between period of quasi-rhythmic activity and long episodes of rest. Moreover, consecutive movements were more similar when executed at short time intervals (~10s). In order to study the mechanisms responsible for the spontaneous decisions to move, I coupled SPIM to tail movement analysis. Using dimensionality reduction, I identified clusters of neurons predicting the direction of spontaneous turn movements but not their timings. This Preliminary result suggests that distinct pathways could be responsible for the timing (when) and the selection (what) of spontaneous actions. Together, the results shed light on the role of feedback and internal dynamics in shaping behaviors and open the avenue for investigating complex sensorimotor process in simple systems

    A 2D virtual reality system for visual goal-driven navigation in zebrafish larvae

    No full text
    International audienceAnimals continuously rely on sensory feedback to adjust motor commands. In order to study the role of visual feedback in goal-driven navigation, we developed a 2D visual virtual reality system for zebrafish larvae. The visual feedback can be set to be similar to what the animal experiences in natural conditions. Alternatively, modification of the visual feedback can be used to study how the brain adapts to perturbations. For this purpose, we first generated a library of free-swimming behaviors from which we learned the relationship between the trajectory of the larva and the shape of its tail. Then, we used this technique to infer the intended displacements of head-fixed larvae, and updated the visual environment accordingly. Under these conditions, larvae were capable of aligning and swimming in the direction of a whole-field moving stimulus and produced the fine changes in orientation and position required to capture virtual prey. We demonstrate the sensitivity of larvae to visual feedback by updating the visual world in real-time or only at the end of the discrete swimming episodes. This visual feedback perturbation caused impaired performance of prey-capture behavior, suggesting that larvae rely on continuous visual feedback during swimming

    Whole-brain neuronal activity displays crackling noise dynamics

    No full text
    Previous studies suggest that the brain operates at a critical point in which phases of order and disorder coexist, producing emergent patterned dynamics at all scales and optimizing several brain functions. Here, we combined light-sheet microscopy with GCaMP zebrafish larvae to study whole-brain dynamics in vivo at near single-cell resolution. We show that spontaneous activity propagates in the brain’s three-dimensional space, generating scaleinvariant neuronal avalanches with time courses and recurrence times that exhibit statistical self-similarity at different magnitude, temporal, and frequency scales. This suggests that the nervous system operates close to a non-equilibrium phase transition, where a large repertoire of spatial, temporal, and interactive modes can be supported. Finally, we show that gap junctions contribute to the maintenance of criticality and that, during interactions with the environment (sensory inputs and self-generated behaviors), the system is transiently displaced to a more ordered regime, conceivably to limit the potential sensory representations and motor outcomes.A.P.-A. was supported by a Juan de la Cierva fellowship (IJCI-2014-21066) from the Spanish Ministry of Economy and Competitiveness. A.J. was supported by the Fondation pour la Recherche Medicale (FRM:FDT20140930915) and the ENS Cachan. M.P. was supported by the ENS Lyon. G.D. was funded by the European Research Council (ERC) Advanced Grant DYSTRUCTURE (No. 295129), by the Spanish Research Project PSI2016-75688-P (AEI/FEDER), and by the European Union’s Horizon 2020 research and innovation program under grant agreement No. 720270 (HBP SGA1). G.S. was supported by ERC StG 243106, ERC CoG 726280, ANR-10-LABX-54 MEMO LIFE, and ANR-11-IDEX-0001-02 PSL Research University. We thank J. Boulanger-Weill for technical assistance and discussions, Patricia Gongal for editorial assistance, and David Hildebrand for providing GCaMP6f line

    Whole-brain neuronal activity displays crackling noise dynamics

    No full text
    Previous studies suggest that the brain operates at a critical point in which phases of order and disorder coexist, producing emergent patterned dynamics at all scales and optimizing several brain functions. Here, we combined light-sheet microscopy with GCaMP zebrafish larvae to study whole-brain dynamics in vivo at near single-cell resolution. We show that spontaneous activity propagates in the brain’s three-dimensional space, generating scaleinvariant neuronal avalanches with time courses and recurrence times that exhibit statistical self-similarity at different magnitude, temporal, and frequency scales. This suggests that the nervous system operates close to a non-equilibrium phase transition, where a large repertoire of spatial, temporal, and interactive modes can be supported. Finally, we show that gap junctions contribute to the maintenance of criticality and that, during interactions with the environment (sensory inputs and self-generated behaviors), the system is transiently displaced to a more ordered regime, conceivably to limit the potential sensory representations and motor outcomes.A.P.-A. was supported by a Juan de la Cierva fellowship (IJCI-2014-21066) from the Spanish Ministry of Economy and Competitiveness. A.J. was supported by the Fondation pour la Recherche Medicale (FRM:FDT20140930915) and the ENS Cachan. M.P. was supported by the ENS Lyon. G.D. was funded by the European Research Council (ERC) Advanced Grant DYSTRUCTURE (No. 295129), by the Spanish Research Project PSI2016-75688-P (AEI/FEDER), and by the European Union’s Horizon 2020 research and innovation program under grant agreement No. 720270 (HBP SGA1). G.S. was supported by ERC StG 243106, ERC CoG 726280, ANR-10-LABX-54 MEMO LIFE, and ANR-11-IDEX-0001-02 PSL Research University. We thank J. Boulanger-Weill for technical assistance and discussions, Patricia Gongal for editorial assistance, and David Hildebrand for providing GCaMP6f line

    A microfluidic device to study neuronal and motor responses to acute chemical stimuli in zebrafish

    No full text
    International audienceZebrafish larva is a unique model for whole-brain functional imaging and to study sensory-motor integration in the vertebrate brain. To take full advantage of this system, one needs to design sensory environments that can mimic the complex spatiotemporal stimulus patterns experienced by the animal in natural conditions. We report on a novel open-ended microfluidic device that delivers pulses of chemical stimuli to agarose-restrained larvae with near-millisecond switching rate and unprecedented spatial and concentration accuracy and reproducibility. In combination with two-photon calcium imaging and recordings of tail movements, we found that stimuli of opposite hedonic values induced different circuit activity patterns. Moreover, by precisely controlling the duration of the stimulus (50–500 ms), we found that the probability of generating a gustatory-induced behavior is encoded by the number of neurons activated. This device may open new ways to dissect the neural-circuit principles underlying chemosensory perception

    Functional Interactions between Newborn and Mature Neurons Leading to Integration into Established Neuronal Circuits

    Get PDF
    From development up to adulthood, the vertebrate brain is continuously supplied with newborn neurons that integrate into established mature circuits. However, how this process is coordinated during development remains unclear. Using two-photon imaging, GCaMP5 transgenic zebrafish larvae, and sparse electroporation in the larva's optic tectum, we monitored spontaneous and induced activity of large neuronal populations containing newborn and functionally mature neurons. We observed that the maturation of newborn neurons is a 4-day process. Initially, newborn neurons showed undeveloped dendritic arbors, no neurotransmitter identity, and were unresponsive to visual stimulation, although they displayed spontaneous calcium transients. Later on, newborn-labeled neurons began to respond to visual stimuli but in a very variable manner. At the end of the maturation period, newborn-labeled neurons exhibited visual tuning curves (spatial receptive fields and direction selectivity) and spontaneous correlated activity with neighboring functionally mature neurons. At this developmental stage, newborn-labeled neurons presented complex dendritic arbors and neurotransmitter identity (excitatory or inhibitory). Removal of retinal inputs significantly perturbed the integration of newborn neurons into the functionally mature tectal network. Our results provide a comprehensive description of the maturation of newborn neurons during development and shed light on potential mechanisms underlying their integration into a functionally mature neuronal circuit.Fil: Boulanger Weill, Jonathan. Ecole Normale Supérieure; FranciaFil: Coste, Virginie. Ecole Normale Supérieure; FranciaFil: Jouary, Adrien. Ecole Normale Supérieure; FranciaFil: Romano, Sebastián Alejo. Ecole Normale Supérieure; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación en Biomedicina de Buenos Aires - Instituto Partner de la Sociedad Max Planck; ArgentinaFil: Pérez Schuster, Verónica. Ecole Normale Supérieure; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Sumbre, Germán. Ecole Normale Supérieure; Franci
    corecore