
Visually induced and spontaneous behavior in the

zebrafish larva

Adrien Jouary

To cite this version:

Adrien Jouary. Visually induced and spontaneous behavior in the zebrafish larva. Neurons
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Abstract

Behavior is often conceived as resulting from a stimulus-response association. Under

this paradigm, understanding the nervous system is reduced to finding the relation

between a sensory input and a motor output. Yet, in naturally behaving animals,

motor actions influence sensory perceptions just as much as the other way around.

Animals are continuously relying on sensory feedback to adjust motor commands. On

the other hand, behavior is not only induced by the sensory environment, but can

be generated by the brain’s rich internal dynamics. My goal is to understand the

sensory-motor dialogue by monitoring large brain regions, yet, with a single-neuron

resolution. To tackle this question, I have used zebrafish larva to study visually induced

and internally driven motor behaviors. Zebrafish larvae have a small and transparent

body. These features enable using large-scale optical methods, such as selective plane

illumination microscopy (SPIM), to record brain dynamics.

In order to study goal-driven navigation in conditions compatible with imaging,

I developed a visual virtual reality system for zebrafish larva. The visual feedback

can be chosen to be similar to what the animal experiences in natural conditions.

Alternatively, alteration of the feedback can be used to study how the brain adapts to

perturbations. For this purpose, I first generated a library of free-swimming behaviors

from which I learned the relationship between the trajectory of the larva and the shape

of its tail.Then, I used this technique to infer the intended displacements of head-fixed

larvae. The visual environment was updated accordingly. In the virtual environment,

larvae were capable of maintaining the proper speed and orientation in the presence of

whole-field motion and produced fine changes in orientation and position required to

capture virtual preys. I demonstrated the sensitivity of larvae to feedback by updating

the visual world only after the discrete swimming episodes. This feedback perturbation

induced a decay in the performance of prey capture behavior, suggesting that larva

are capable of integrating visual information during movements.

Behavior can also be induced by the internal dynamics of the brain. In the ab-

sence of salient sensory cues, zebrafish larva spontaneously produces stereotypical

tail movements, similar to those produced during goal-driven navigation. After hav-
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ing developed a new method to classify tail movements, I analyzed the sequence of

spontaneously generated tail movements. The latter switched between period of quasi-

rhythmic activity and long episodes of rest. Moreover, consecutive movements were

more similar when executed at short time intervals (∼ 10s). In order to study how

spontaneous decisions emerge, I coupled SPIM to tail movement analysis. Using di-

mensionality reduction, I identified clusters of neurons predicting the direction of spon-

taneous turn movements but not their timings. This Preliminary result suggests that

distinct pathways could be responsible for the timing (when) and the selection (what)

of spontaneous actions. Together, the results shed light on the role of feedback and

internal dynamics in shaping behaviors and open the avenue for investigating complex

sensorimotor process in simple systems.
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The problem then is not this: How does the

central nervous system effect any one,

particular thing? It is rather: How does it do

all the things that it can do, in their full

complexity? What are the principles of

organization?

John Von Neumann (1951). General and

logical theory of automata

Chapter 1

Introduction

1.1 Understanding behavior: the sensory-motor

dialogue

Deep neural networks are now capable of competing with primates in image recogni-

tion tasks (Cadieu et al., 2014). The architecture of artificial neural network reflects

by fair means our understanding of the brain: an input-output system that builds

complex associations from simple local operations (Bengio, 2009). After supervised

learning, a chain of transformations in these networks associates an input to an ap-

propriate output. The input provided to the network and its connectivity pattern

deterministically specify the output. Early investigations on the brain circuitry were

dominated by a similar idea: the reflex theory, where patterns of inputs delivered to

the primary sensory neurons can be channeled to produce patterns of muscle activa-

tion. This theory relied on the observation that neurons are inert until an input is

provided (Sherrington, 1906). This observation led Sherrington to claim, in 1906, that

this was a general rule for the whole nervous system:

From the point of view of its office as the integrator of the animal mecha-

nism, the whole function of the nervous system can be summed up in one

world, conduction.

Under this scope, neural circuits can be seen primarily as input-output devices link-

ing a sensory stimulation to an appropriate motor response. Reducing the coupling

between sensory circuits, motor circuits and the environment to a causal mechanism

between the stimulus and the response, greatly simplifies scientific investigation on

animal behavior (Edelman, 2015). Under the input-ouput paradigm, behavior can be

decomposed as a series of stimulus/response (S/R) associations.

1



2 Introduction

The S/R assumption has provided neuroscience with a rich quantitative framework

to understand the relation between neuronal activity and behavior. The methodology

employed to investigate the neuronal causes of behavior can be grossly recapitulated

by three successive steps (Clark et al., 2013). First is the need to characterize re-

producible behavior. This is done by identifying environmental features that reliably

trigger a motor response either by observing natural behavior, or, by training animals

to perform a S/R association. Then, brain recording techniques are used to find neu-

ronal correlates. Investigators identify circuits or neurons whose activity correlates

with stimulus features, behavioral responses or cognitive states relevant for the behav-

ior. Finally, the "causal" role of the identified circuit is demonstrated by showing its

necessity and sufficiency for behavior. Suppression of its activity is used to demon-

strate its necessity for eliciting the behavior. Direct optical or electrical stimulation

of its activity establishes the sufficiency of the circuit to induce the behavior.

This connection between a circuit and a behavior is a useful constraint for the

establishment of a model. However, it does not provide sufficient insight on how this

function is carried out (Sompolinsky, 2014). By systematically repeating the same

external sensory protocol in order to estimate the statistics of the animal response,

studies often lead to the description of neurons in terms of their average preferred

stimuli or actions. Indeed, the S/R paradigm is especially suited to understand both

ends of the input-output computation: how does the tuning of sensory neurons encode

stimulus properties (Hubel and Wiesel, 1959), and how does the activity of neurons

in motor area shape the generation of complex movements (Ashe and Georgopoulos,

1994). Our current understanding of neuronal circuitry enables neuroscientists to

decode visual environments from the activity of the primary visual cortex (Nishimoto

et al., 2011), or to coordinate artificial prosthetics based on the dynamics of the

primary motor cortex (Wessberg et al., 2000).

Behavioral theories conceive the organism as primarily reactive, driven by the sen-

sory stimuli (Skinner, 1976). Other theories have emerged in neuroscience to overcome

fundamental limitations of this reflexive view of the brain: cognitivism and embodi-

ment. Cognitivism accounts for abstract mental states that are not directly coupled

with action nor with environmental sensory stimulation but rather reflect the ongoing

thought process (Raichle, 2010). Embodiment stresses the crucial role of the body and

its actions to shape perception. In natural behaving conditions, the brain is not a pas-

sive receiver of sensory sensations but actively seeks information (Gover, 1996). The



1.1 Understanding behavior: the sensory-motor dialogue 3

behaviorist view, however is still dominant when considering "simple" animal models 1.

Nevertheless, in simple sensorimotor tasks, interactions with the environment cannot

be decomposed into a sequence of distinct events that start with a discrete stimulus and

end with a specific response. Actions are continuously modified through feedback con-

trol. Furthermore, animals continuously evaluate available actions and decide whether

to pursue a given goal or to switch to an alternative. In my thesis project I have used

two approaches to address the limitations of the stimulus/response framework:

1. The influence between the sensory environment and motor actions is
reciprocal. The description of the environment as a set of external inputs does

not account for the complex perception-action loop occurring in natural behav-

ior. Even for simple sensorimotor tasks, sensory feedback resulting from action

are critical to adjust motor commands in order to reach a goal. In the first part

of this introduction, I will present virtual reality systems that provide a con-

trolled sensory feedback allowing the study of goal-driven behavior in conditions

compatible with brain functional imaging.

2. Motor actions should not be considered only as a reaction to sensory

stimuli. In strong contradiction with the reflexive view of the brain, the energy

budget associated with momentary demands of the environment could be as

little as 1% of the total energy budget of the brain (Raichle, 2006), reflecting the

major role of intrinsic activity. Previous studies have been dominated by research

on neuronal activity and behaviors evoked by well controlled sensory stimuli.

However, the brain’s rich internal dynamics are capable of generating behavior

even in the absence of sensory cues. In the second part of the introduction, I

will present the ecological motivations for internally driven behaviors and I will

review their underlying neuronal mechanisms.

1In a recent paper, Buzsáki et al. (2015) considered a nervous system as "simple" when "the
connection between output and input networks is direct and immediate". This definition of "simple
animal" is reminiscent of Sherrington’s view.
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1.2 Sensory feedback in the perception-action loop

The nervous system is organized around goals that promote its fitness: finding a mate,

escaping from predators or hunting preys. For an animal behaving naturally, motor

actions influence the sensory system as much as the other way around.

Sensing is not a passive process. "Active sensing" is the process by which a sensory

apparatus is positioned and modulated to enhance the animal’s capacity to extract be-

haviorally relevant information (Gibson, 1962). This is obvious during tactile sensing:

a rodent will rhythmically move its wisker. The sensation resulting from the bending

of a whisker will be the result of a combination between the speed of the whisker

and the tactile environment. Motor actions are thus actively driving sensations. A

more widespread example of active sensing is eye movements. Eyes are not sensors

waiting to receive external input but are continuously sampling the visual scene with

systematic patterns of movement and fixation (MacEvoy et al., 2008). This rhythmic

exploration resulting from eye movement has a crucial role in visual processing and

perception (Schroeder et al., 2010).

The development of the visual system relies on proper motor feedbacks. In their

classical study, Held and Hein (1963) showed the consequence of deprivation of active

exploration on development. For 3 h a day and during 42 days, kittens were placed

in the apparatus showed in Figure 1.1.A. One of them could freely move (A) while

the other was passively exposed to identical visual and vestibular stimuli (P). When

tested at the end of these experiments, the passive kittens (P) performed poorly in

several visuo-motor tasks. This study provided evidence for a developmental process

relying on the feedback of motor actions on sensory experience.

Motor actions influence sensory neurons even without the mediation of the en-

vironment or body. When changing from an immobile to flying state, visual motion

sensitive neurons in the fly shift their tuning to higher velocities. Figure 1.1.B shows

the tuning curve of a H1 speed-sensitive interneuron measured under two conditions:

while the fly is not moving and during a flying state. In both cases, the visual stimuli

are the same but the tuning of the neuron broadens toward high velocities during flight

(Jung et al., 2011). A similar alteration of speed tuning in walking flies has also been

reported (Chiappe et al., 2010).
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Fig. 1.1: Influence of the motor activity on the sensory system
(A) Illustration of the apparatus used to study the effect of motor feedback on the
development of the sensorimotor system. Active (A) and passive (P) kittens have a
similar sensory experience but (A) is freely moving in contrast to (P) that does not
experience self-generated sensory change. The sensory experience of (P) is driven
by (A). Adapted from Held and Hein (1963). (B) Temporal frequency tuning curves
of the mean response of a H1 neurons in non-flying and flying flied (black and gray
respectively). When the fly is flying, H1 neurons is tuned to higher temporal fre-
quency. Adapted from Jung et al. (2011).

1.2.1 Recording from behaving animals: Virtual reality in

neuroscience

We have seen how sensory feedback can affect brain activity during behavior. To study

the neural basis of these behaviors, two options are available:

• The first is to record neuronal activity in freely moving animals. High resolu-

tion microscopy techniques are however difficult to adapt to moving animals.

Methods can either measure temporally accurate signals from few neurons (e.g.

bioluminescence marker (Naumann et al., 2010), head-attached electrode im-

plants) or measure spatially defined signal with a poor temporal resolution (e.g.

calcium integrator (Sohal et al., 2009)).

• An alternative solution is to use virtual reality (VR) in head-fixed conditions as

shown in Figure 1.2. This method reproduces a subset of the sensory environ-

ment that the animal would sense while freely moving. In closed-loop VR, the

stimuli are continuously updated according to the animal motor responses.
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Virtual reality setups have two main advantages compared to monitoring neuronal

activity in freely behaving conditions. In the first place, it is compatible with high-

precision functional neuronal recordings given that the head needs to be restrained

in all imaging techniques or intracellular recording. Secondly, feedback can be chosen

to be similar to what the animal would experience in natural conditions or one can

manipulate them to study how the brain adapts to perturbations. VR has been used for

decades to study the neural basis of behavior and has been adapted to several animal

models and different sensory modalities (Dombeck and Reiser (2012), Sofroniew et al.

(2014)). By allowing spatial navigation, VR can be also used to investigate complex

cognitive processes, for example, the maze running ability of rats allows the study of

memory or decision making.

Animal

Virtual Reality

Sensory input Motor output

Neuronal Activity recording

Measured Movement
Virtual Environment

presented

Fig. 1.2: Virtual Reality in neuroscience. Schematic view of a virtual reality be-
havioral experiment. The animal’s movements are measured and passed through in-
strumentation and computational stages in order to couple the movements with the
sensory stimuli. Meanwhile, the neuronal activity can be monitored using functional
imaging or electrophysiology.

1.2.2 How real is virtual reality?

How is spatial navigation experienced in VR, does it feel real? The answer may lay in

the activity of neurons involved in representing space during virtual navigation. Even

though birds can sense magnetic fields (Wu and Dickman, 2012), most animals are

not equipped with position or orientation sensors. Position and orientation in space

are inferred using a combination of external cues and path integration. In primates

or rodents, neurons in the hippocampus become active during active exploration in

specific locations of the environment. Those place-specific cells are called place cells,

grid cells or border cells depending on the spatial pattern that they encode.
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Early studies have shown that one dimensional place cells were found while a mouse

was navigating along a virtual linear track (Dombeck et al., 2010). Extension of this

setup to two dimension (2D) navigation failed to find place-specific cells. Only re-

cently, an elegant setup allowed Aronov and Tank (2014) to monitor 2D place specific

cells (Figure 1.3.A,B). In this experiment, the rodent was walking on a spherical

treadmill. It could move forward by walking on the treadmill and turn by physically

rotating its head. Although the head was restrained on one axis, it could still rotate,

thus providing vestibular feedback absent in previous setups. The animal inferred

its position in the 2D virtual environment through a combination of different sensory

modalities: visual input from the display screen, vestibular input from the head move-

ment and locomotor feedback. Providing only visual and locomotor feedback did not

allow observing 2D place cells. This example illustrates how sensitive to feedback the

neuronal representation of space is.

Insects are also capable of path integration (Collett et al., 2013). Recently, studies

in VR of walking flies have shown the existence of head-direction cells combining self

motion and external cues to represent their orientation with respect to the environ-

ment (Seelig and Jayaraman, 2015). The neuronal activity encodes the fly orientation

using both visual landmarks and motor feedback. In darkness and in the absence of

vestibular input, the orientation of the fly relative to the ball can be decoded from the

population activity of neurons in the ellipsoid body. This shows their ability for path

integration using only locomotor feedback (Figure 1.3.C,D).

The VR approach has been successfully applied to study behavior in combination

with functional imaging. However, even simple behaviors can involve large networks

distributed across different brain regions (Portugues et al., 2014). In rodent animal

models, technological limitations prevent us from simultaneously monitoring extensive

brain regions. Therefore, it can be advantageous to study a model system with a

compact brain and a reasonably rich behavioral repertoire, which enables whole brain

imaging with single-cell resolution such as the zebrafish larva (Ahrens and Engert,

2015).
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Fig. 1.3: Spatial navigation in VR. (A) Scheme of the setup used for rodent
VR experiments. Mouse locomotion results in rotation of the trackball recorded
by movement sensors. The visual scene is projected on a spherical screen sur-
rounding the rodent. Head restraining the mouse allows recording neuronal activ-
ity. (B) Example of several rate maps recorded simultaneously from place cells
in the hippocampus CA1 region. Neuron fire as a function of the animal position
in the virtual environment consisting of a square area. Adapted from Aronov and
Tank (2014). (C) Setup of the fly VR experiment and close-up on the fly on an air-
floating ball. (D) Accumulated rotation of the ball while the fly is in total darkness
(in green). A population vector average of neuron in the ellipsoid body (in brown)
sufficed to predict the accumulated rotation. Adapted from Seelig and Jayaraman
(2015).
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1.3 Internally driven behaviors

1.3.1 Motivation for action in absence of sensory stimulation

Movement does not occur solely as a consequence of sensory stimulation. Even in

the relative absence of stimuli, the brain’s internal dynamics is capable of generating

behavior. Hereafter, I will consider a behavior as being internally driven when it can

not be linked to external stimulus. Internal drives such as hunger or fear can drive

spontaneous movements even in the absence of external stimuli. But what happens if

we consider a well-fed and comfortable animal with no obvious motivations? Although

it is not trivial to determine the motivation underlying a spontaneous movement, we

can consider several reasons why internally driven behaviors should not be considered

as the output of a noisy system, with no biological relevance. Driving force of internally

driven behaviors can be casted into two categories: extrinsic or intrinsic motivation

(Gottlieb et al., 2013).

Extrinsic motivation for exploration

In extrinsically motivated contexts, behavior is a way to reach a biological goal e.g.

finding food or potential mates. Foraging is an example of a natural decision-making

process, widespread across taxa, from C elegans (Calhoun and Hayden, 2015) to mon-

keys (Blanchard and Hayden (2014), Hayden et al. (2011)). In experience-studying

foraging, the animal faces two possibilities: the default option (foreground) and the

non-default option (background). For a sit-and-wait predator, the foreground decision

is to keep waiting for possible prey, alternatively, the background option is to move to

another location.

Neurons in the dorsal anterior cingumate cortex (dACC) of monkeys have been

studied during foraging tasks. Firing rate in the dACC rose gradually when the ani-

mal chose the background option and reached a threshold during foreground. The rise

and threshold were modulated by context (e.g. uncertainty about the background op-

tion) and internal drives (how desirable is the foreground option). The dAAC neurons

activity was consistent with an accumulation of evidence, and the level of its activity

reflected the value of the background option (Hayden et al., 2011).

At the behavioral level, the Lévy-flight foraging hypothesis predicts that a predator

should adopt search strategies known as Lévy-flights when prey is spatially sparse and

distributed unpredictably. Lévy flight is a random walk in which the distance trav-
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eled at each step follows a heavy tail distribution. In contrast with Brownian motion,

Lévy-flights are less confined because of the small number of long walks (Viswanathan,

2010). Analysis of displacement, recorded from animal-attached GPS has shown that

diverse marine predators: sharks, bony fish, sea turtles and penguins exhibit Lévy-

walk-like behavior close to the theoretical optimum (Sims et al., 2008). Some indi-

viduals switched between Lévy and Brownian movement as they traversed different

habitat types showing that they adapt their search strategy to the statistical patterns

of the landscape (Humphries et al., 2010).

Foraging behavior is the result of a trade-off between exploiting immediate re-

sources and exploring alternatives, a classic problem of reinforcement learning (Got-

tlieb et al., 2013). When an agent is engaged in a task aimed at maximizing extrinsic

reward (e.g. food), seeking spontaneously for information represents an intermediate

step in attaining a reward. As we will see, this contrasts with intrinsically motivated

behavior where the exploration is the purpose in itself.

Intrinsic motivation for learning

Interestingly, in controlled environments, where food resources are always available

and animals are over-trained to know where the food is, animals can still exhibit rich

temporal and sequential behavioral dynamics (Jung et al., 2014). Under these condi-

tions, the behaviors cannot simply be explained as an optimal strategy for exploiting

available resources but may originate from an intrinsic drive for exploring.

In intrinsically motivated behaviors, information seeking is in itself the purpose,

and it is not driven by imperatives of resource exploitation. In the sensorimotor do-

main, for instance, intrinsically motivated behavior could be used to acquire motor

skills. The field of developmental robotics is aiming at designing of agents that can

autonomously explore environments, without pre-programmed trajectories, but based

solely on their intrinsic interest. Inspired from developmental psychology, the systems

built were capable of learning the consequences of their motor actions and solve self-

generated problems by maximizing the local learning progress (Gottlieb et al., 2013).

Piaget described a sequence of progress occurring during child learning from sensori-

motor to abstract reasoning stages (Piaget, 1972). The field of developmental robotics

suggests that child learning is not necessarily a pre-programmed sequence, but may

emerge through an intrinsically motivated learning.
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Bird songs are a good example of intrinsically motivated behaviors. Male song-

birds primarily aim at attracting mates. However, the zebra finche male also sings

outside the breeding season. These songs were not aimed to any female, and thus

they were defined as undirected songs (Kroodsma and Byers, 1991). Unlike sexually

oriented songs, undirected songs are ignored by potential recipients and have no im-

mediate effects on the conspecifics’ behavior. Undirected songs show more variability

than sexually oriented ones, suggesting that they could reflect a practicing exercise

(Wellock, 2012). Their goal could be the retrieval of auditory information about their

generated songs through feedback in order to improve it. Recent studies suggest that

the rewarding mechanisms associated with undirected and sexually directed songs are

different. Sexually oriented songs may be primarily reinforced by opioids released in

neuronal circuits associated with the social context. In contrast, undirected songs are

not effected by external rewards, but could be reinforced through opioids released in

the ventral segmental area by the act of singing (Riters, 2012).

The goal of internally driven behavior is not to act on the environment but to re-

trieve information. The distinction between extrinsically and intrinsically motivated

spontaneous behaviors is not trivial but illustrates that distinct motivations can un-

derly internally driven behaviors. Beyond the nature of these motivations, the spon-

taneous decision-making processes rely on two questions: what and when. Which

movement to choose and when to execute it. In the next section I will review investi-

gations on the neuronal mechanisms involved in spontaneous movements.

1.3.2 Neural basis of spontaneous behavior

Looking at the same behavior in sensory-induced and spontaneous contexts, it is ex-

pected that the neuronal activity partially overlaps in both scenarios, at least at the

level of the central pattern generators (CPGs) in the spinal cord. Under the S/R

paradigm, it is tempting to consider that the pathways involved during sensory-based

decision making can be activated by neuronal noise causing internally driven behavior.

In this section, I will first review preliminary evidence indicating that spontaneously

driven and sensory-induced decisions are controlled by partially non-overlapping path-

ways. Then, I will present the results on the neuronal mechanisms that specify the

timing (when) and selection (what) of spontaneous actions.
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Similarity between neuronal activity underlying internally driven and stimulus-

induced behaviors

Fluctuations in the activation of sensory brain regions are insufficient to explain spon-

taneous movements. By recording motion-sensitive neurons in the fly optic lobes,

Rosner et al. (2009) found that the variability was not sufficient to account for the

variability in head movements. This raises the following questions: does a circuitry

specific to spontaneous movements exist and affect the locomotor activity indepen-

dently of any sensory stimulation? General arousal has been defined as promoting an

increase in both locomotor activity and sensory responsiveness (Pfaff et al., 2008).

Experiments in rodents suggested that general arousal could account for 30% of the

variance in activity measured in response to a wide variety of behavioral trial (Garey

et al., 2003). Recent studies in zebrafish indicate that increase in locomotor activity

and sensory responsiveness are not necessarily coupled. Woods et al. (2014) studied

the influence of neuropeptides on the modulation of spontaneous locomotion and sen-

sory responsiveness to several behaviors. Their study identified two neuropeptides,

Cart and Adcyap1b that had no effect on spontaneous locomotor activity during night

and day but affected the probability of inducing a behavioral response to both dark

flash stimuli and tap stimuli (Figure 1.4.A,B). Cck generated the opposite effect,

increasing the spontaneous activity without affecting sensory-induced responsiveness

to the stimuli tested (Figure 1.4.C).

Arousal is thus partitioned into spontaneous locomotor activity and sensory re-

sponsiveness. The neuronal mechanisms responsible for this segregation are unknown,

but this suggests that sensory evoked and spontaneous behavior could be controlled by

partially different neuronal pathways, each affected differently by the neuropeptides

mentioned.

When to move? Timing of spontaneous behavior

How does the brain spontaneously take the decision to execute a given action in the

absence of environmental stimuli? By recording electroencephalogram signals before

spontaneous decisions in humans, Kornhuber and Deecke first described, in 1964, a

gradual buildup in activity starting ∼ 1s before a voluntary movement. In 1983, in

a follow-up experiment, Libet asked subjects to report the time when they first felt

the urge to move (Figure 1.5.A). Subject’s conscious awareness of an intention to
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Fig. 1.4: Segregation of arousal between locomotor activity and sensory
responsiveness according neuropeptites (A) Neuropeptidic modulation of
response to a dark-flash and tapping stimuli. Colored curves correspond to the in-
duction of neuropeptid and black curves to wild-type siblings. Response probabil-
ity +-s.e.m is indicated for each stimulus intensity. Adcyap1b and cart increase the
probability of response and decrease the stimulus threshold of detection for both
dark-flash and tapping stimuli. Responsiveness of cck-expressing larvae show how-
ever indistinguishable from control. (B) Neuropeptidic modulations of locomotor
activity. Swimming time is quantified by the time of swimming during a 10-minute
window. The black arrows represent the heat-shock that induced the expression of
neuropeptite. Spontaneous activity of larvae is monitored day (D) and night (N) af-
ter the heat-shock. Cck-expressing larvae showed an increase in locomotion following
the heatshock contrasting with cart and adcyap1b expressing larvae that showed no
significant variation. Adapted from Woods et al. (2014).



14 Introduction

act occurs only 200 ms before the onset of a movement, which is much later than the

onset of the readiness potential. The debate raised by this experiment is outside the

scope of this thesis but this experiment is still unique in neuroscience in its philosoph-

ical implication. The idea that unconscious brain processes are the true initiators of

voluntary acts inflicted a narcissistic blow to our notion of free-will. In humans, these

results were confirmed using fMRI (Bode et al., 2011) and at the single neuron level

in epileptic patients (Fried et al., 2011). Figure 1.5.B shows single-cell recording

prior to self-initiated movement in the Supplementary Motor Area where electrical

stimulations have been reported to induce an urge to move. Even though the report

of the conscious time can only be studied in primates, readiness potential was found

in other species as well.

In invertebrates, extracellular recordings from the crayfish descending motor path-

way showed similar temporal dynamics before the onset of walking (Figure 1.5.C,D,

Kagaya and Takahata (2010)). A recent study in the rat Secondary Motor Cortex (M2)

showed interesting perspectives on possible mechanisms at the core of this gradual

build-up in firing rate before movements (Murakami et al., 2014). In this experiment,

rats had to choose between waiting for auditory cues to collect a big reward, or stop

waiting to collect a small reward (Figure 1.5.E). The timing of the auditory cues was

unpredictable. The study focused on trials where the rats decided to stop waiting for

the auditory cues. Of the 385 neurons electrophysiologically recorded from M2, ∼ 10%

showed a "ramp-to-threshold" activity reminiscent of the readiness potential (Figure
1.5.F). The faster the ramping activity, the shorter was the time. Additionally, ∼ 20%

were identified as "transient neurons". Their firing rate was correlated with waiting

time in a brief burst rather than a ramp (Figure 1.5.F). In the proposed model,

a set of transiently active neurons served as inputs to integrator neurons displaying

a ramping activity. This integration-to-bound model is similar to a decision model

where a population of neurons accumulates evidences and generates an action when a

threshold is crossed.

Probably due to the influence of Libet’s experiments and its implication questioning

the notion of free will, further studies have mainly focused on the timing of sponta-

neous movements. The literature is however scarce on the mechanisms underlying the

selection of spontaneous actions.



1.3 Internally driven behaviors 15

Fig. 1.5: Readiness Potential across taxa, legend next page
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Fig. 1.5: (Previous page.) (A) Schematic description of the experimental paradigm
of the Liber experiment. Subject is instructed to spontaneously flex his wrist at any
time while looking at the clock-like display. After the movement, the subject had to
report the time when he first became consciously aware of his intention. (B) Raster
plot and histogram of a neuron recorded in the Supplementary Motor Area. Solid
black lines indicate the time of the conscious decisions, dotted lines indicate the on-
set of movements. Adapted from Fried et al. (2011). (C) A spherical treadmill sys-
tem used for extracellular recordings from the nervous system of a crayfish during
walking. (D) Descending unit activity, with raster plot and trial averaged record-
ings from the circumesophageal commisure before the onset of spontaneous walk-
ing. Adapted from Kagaya and Takahata (2010). (E) Schematic diagram of trial
events in the rat waiting task. In each trial, the rat was required to wait for tone
(s) and moved to the reward port to obtain water. If the rat failed to wait for tone
1 (T1), there was no reward. If the rat waited for T1 but left before tone 2 (T2), a
small reward was given. If the rat waited until T2, a large reward was provided.(F)
The firing rate of two neurons recorded in M2. Upper panel: firing rate of a "ramp-
to-threshold" neuron color-coded according to the length of the waiting time and
aligned with the onset of the poke-out. Lower panel: firing rate of a "transient" neu-
ron showing phasic activations at the beginning of the waiting period. The firing
rate is positively correlated with the length of the waiting period of impatient trials.
Adapted from (Murakami et al., 2014).

What to do? Selection of spontaneous action

The firing rate of "ramp-to-threshold" and "transient" neurons predict the timing of

spontaneous actions. In order to find out if those neurons were action-specific or

not, an extension of the nose-poke waiting task of Figure 1.5.E recorded the same

neurons while the rat was performing a lever-press waiting time task.Murakami et al.

(2014) found that among "transient" neurons, the percentage of lever-press predictive

neurons among all the nose-poke predictive neurons was not more than among all

neurons. Thus, neurons whose activity was correlated with the length of the waiting

time period were also action-specific rather than being tied to a general preparation

to any type of movement.

Alternatively, it is possible to consider that distinct paths specify the what and

when of spontaneous movements. In crayfish, by looking at the direction of movement

(forward-backward) in the experience in Figure 1.5.C, some descending units were

found to be not-selective to the direction of movements. Interestingly, they were re-

cruited ∼ 4s before the behavioral onset, the selective units followed them ∼ 2.5s later
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(Kagaya and Takahata, 2010). The dissociation between the when and the what com-

ponents of intentional decision is also supported by human experiments using fMRI.

In a follow-up to Libet’s experiment (Soon et al., 2008), subjects could freely choose

between two options (e.g. right or left tap). While there are still some inconsistencies

regarding the exact localization of these components (Serrien, 2010), they found that

the region predictive of the choice of decision (what) was different from the region pre-

dictive of the timing of action (when). Interestingly, prediction concerning the type

of movement can be made in advance to the prediction of the timing.

During internally driven behaviors, animals face a large set of possible actions and

perform them in complex temporal patterns. Despite the advance in elucidating the

mechanisms governing the when and the what of a decision, Libet-type experiments

are subject to several shortcomings. First, experiments are usually structured in trials.

Thus, the mechanisms observed could be more related to time estimation than to

spontaneous behaviors. A striking example is the fact that populations of "transient"

neurons in M2 are aligned with the beginning of the trial, not with the onset of the

decision. Secondly, in order to have a well-controlled experimental setting, subjects

have to be presented with a very limited set of alternatives (e.g. poke out or lever

press). This situation is oversimplified compared to the vast action repertoire available

in natural conditions. Finally, most neuronal recordings have been made in premotor

or motor circuits, but the influence of other brain regions has not yet been investigated.

Neuronal activities related to decision making are widely distributed (Cisek, 2012). By

monitoring several brain regions, one can disentangle the dynamical properties of the

circuits specifying the what and when of spontaneous motor decision. In the next

section, I will present the zebrafish larva, an animal model that is ideally suited to

study internally driven behaviors by overcoming these limitations.

1.4 Large-scale analysis of circuit dynamics under-

lying behavior in zebrafish larva

1.4.1 The zebrafish as a model for systems neuroscience

The brain complexity arises from the variety of levels of organization: from synaptic

transmission to neuronal circuits and behavior. Each level of organization is attached

to a specific discipline, from genetics to ecology. In this context, it is worthwhile

to focus technological and scientific efforts on a restricted number of animal models,
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Table 1.1: Animal models in neuroscience. The last row indicates the estimated
number of neurons. For Rhesus macaque, only cortical neurons are considered.

where our understanding will benefit from a multidisciplinary approach. Neuroscience

uses several model organisms, each with different brain and behavioral complexities,

illustrated in Table 1.1.

Zebrafish (Danio rerio) is a small gregarious teleost fish (∼ 4 cm) originating from

the south of Asia. They are easy to breed and have a fast reproduction cycle. Develop-

mental and genetic studies have taken advantages of the transparency of their embryo

since the late 1950s. Nowadays, a large library of transgenic and mutant fish is avail-

able, enabling us to target specific cell types or provide vertebrate models of human

neurodevelopmental, neurological and neurodegenerative diseases (Deo and MacRae,

2011).

With the development of new optical methods and optogenetics, the zebrafish

larva has recently become an appealing vertebrate model for systems neuroscience.

Due to its small size and transparency, its brain activity is ideally accessible. State of

the art optical methods including, two-Photon Scanning Microscopy, Selective Plane

Illumination Microscopy, and Light-Field Microscopy have been successfully applied

to simultaneously monitor the activity dynamics of large brain regions (Figure 1.6).

Optogenetic sensors, such as GCaMP, a genetically encoded calcium indicator, can

be expressed in selected populations of neurons. GCaMP changes its fluorescence

properties in response to the binding of Ca2+. The firing of neurons causes an increase

in the intracellular calcium concentration resulting in rapid rises and decay in the

fluorescence of GCaMP sensors.

Additionally, optogenetic actuators such as halorhodopsin or channelrhodopsin,

can also be expressed. These light activated ion channels can induce or suppress
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neuronal activity. This perturbation of neuronal activity can be useful to probe the

causal role of neuronal activity in selected populations of neurons.

All these manipulations are commonly performed in an "all-optical" manner with-

out the need for surgery, or anesthesia and just requires the larva to be head-restrained

in agarose leaving the eyes and the tail free to move.

In order to understand behavior, it is necessary to understand the total action of

the nervous system, as explained by D. Hebb in The Organization of Behavior (1949):

One can discover the properties of its various parts more or less in isolation;

but it is a truism by now that the part may have properties that are not

evident in isolation, and these are to be discovered only by study of the

whole intact brain.

The ability to simultaneously monitor sensory and motor areas in a behaving animal

make zebrafish an ideal model for the holistic approach on how the brain generates

behavior (Ahrens and Engert, 2015).

Fig. 1.6: Coarse brain anatomy of a 6 dpf zebrafish larva. (A) Bright-field
image of a zebrafish larva. (B) Overlay of a bright-field image of the larva head
with images of its brain acquired using two-photon microscopy (left part of the
brain) and fluorescence imaging (right part of the brain). Note the spatial resolu-
tion on the left part obtained with a two-photon microscopy. Neurons are labeled
with the green fluorescent calcium indicator GCaMP5G. Image reproduced from
Fetcho (2012). (C) Schematic drawing of the larva’s brain showed in B represent-
ing the main parts of the brain (telencephalon, optic tectum, hindbrain and spinal
cord) and the eyes. The 100µm scale bar is commong for B and C.
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Slow scoot J turn Routine turn C bend

Low degree of
bending and tail
beat frequency.
Yaw angle smaller
than 3°.

Fine reorientation
tuning associated
with prey capture.
A prominent bend
occurs at the cau-
dal portion of the
tail.

Slow-speed turn
with a large bend
angle resulting
in reorientation
of the larva. The
bend is mostly
unilateral.

High-velocity turn
of short duration.
Rely on the Mau-
thner cells.

Table 1.2: Stereotypical tail movements. Each column represents a typical tail
movement and its characteristics. The middle column shows the superimposition of
image of the larva during the tail bout. The trajectory of the head is shown by a
white line, the black arrows represent the head orientation at the begining and end
of the bout.

1.4.2 Locomotion of zebrafish larva

The locomotor repertoire of zebrafish larva

The zebrafish larva propels itself through a sub-carangiform pattern of body undula-

tions. The oscillations of the tail are coordinated with pectoral fins movements. At

the larval stage, zebrafish locomotor patterns are characterized by swimming episodes

intermingled with non-swimming episodes called "beat and glide". The discrete seg-

ments formed by the beat and glide swim in larvae are called tail bout, the range

of durations of tail bouts is 80-400 ms, the range of tail beat frequency is 30-100 Hz

(Buss and Drapeau, 2001). The quantification of behaviors is greatly facilitated be-

cause of the discrete nature of locomotion. Zebrafish larvae exhibit a variety of tail

bouts: they include slow scoot (also called forward swim), routine turn, J turn or C

bend illustrated in Table 1.2. These categories were described according to the tail

movements as well as the kinematics of the trajectories (Mirat et al. (2013), Borla et al.

(2002), Budick and O’Malley (2000)). Because they are defined by the properties of

the trajectory, this categorization is not suited for the head-fixed conditions, where

the trajectories are unknown.



1.4 Large-scale analysis of circuit dynamics underlying behavior in zebrafish larva 21

The natural segmentation of movement events associated with a reasonably stereo-

typed locomotor repertoire is ideally suited for large-scale characterization of zebrafish

behavior.

Neural basis of locomotion

Due to its limited locomotor repertoire and optical accessibility, zebrafish offers the

opportunity to dissect the circuits involved in the generation of movements.

Within the spinal cord, activation of neurons follows a dorso-ventral organization.

Ventral spinal interneurons and motor neurons are activated during slow-swimming

regimes, and more dorsal neurons are recruited as the velocity of locomotion increases.

Menelaou and McLean (2012) suggested that a continuous variation of the group

of interneuron cell types, produces a smooth shift in the locomotor speed. Some

interneurons within the spinal cord are specific to a category of movement. Optoge-

netic stimulation of Kolmer-Agduhr cells generated spontaneous slow scoots, whereas

activation of Rohon-Beard touch sensitive cells triggered C-bends (Wyart et al., 2009).

The spinal cord receives descending glutamatergic inputs from the reticulospinal

cells (RS), causing the tail to oscillate. This population is composed of less than 300

neurons located in the hindbrain and mid-brain (Figure 1.7.A). The most iconical is

the Mauthner cell, a large neuron implicated in short latency escape responses. Apart

from the Mauthner cells, a large part of RS neurons is multifunctional.

Individual RS neurons can be active during multiple types of locomotor behavior.

The nucleus of the longitudinal fasciculus (nMLF) has been implicated in prey capture

and responses to whole field motion. Ablation of two pairs of identified cells within

the nMLF, MeLc and MeLr impaired prey capture as well as the ability to modulate

speed in response to whole-field motion (Gahtan et al. (2005), Severi et al. (2014)).

Electrical activation of the nMLF induced scoot movements whose duration and speed

are modulated by the strength of the stimulation (Figure 1.7.B).

A small portion of cells are involved in turning, and the ventromedial spinal projec-

tion neurons (vSPNs) bias forward scoot to asymmetrical movement under different

behavioral contexts (Huang et al. (2013), Orger et al. (2008)). Their activity is direc-

tion specific and graded by the amount of turning (Figure 1.7.C). Ablation of these

cells decreased the number of turns but also increased the proportion of forward swim

movements, consistent with the idea that these cells bias the kinematic of scoots in a
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graded fashion.

The upstream circuitry that leads to the selective activation of these descending

control neurons can be investigated by studying the neuronal activity in sensory evoked

locomotion.
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Fig. 1.7: Circuit for graded locomotion in zebrafish larva. (A) Head of a ze-
brafish larva. The RS circuits are located in the rectangle. Inset shows a scheme of
the RS neurons. (B) Average bout duration and maximal tail beat frequency per
bout recorded in response to electrical stimulation of the nMLF circuit. Adapted
from Severi et al. (2014). (C) Fluorescent calcium response (DF/F) of a MiV1 neu-
ron as a function of swimming direction. Each dot represents a bout and the color
indicates the direction of the visual stimuli used to elicit the swim. Adapted from
Huang et al. (2013). The color of the bounding box of (B) and (C) match the re-
spective location of the cells in (A).
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1.4.3 Goal-driven behavior in the larval zebrafish

Typical habitat of zebrafish consists of shallow and clear water with slow moving

streams. Zebrafish are commonly found in ephemeral pools or rice paddles. They

are omnivorous, consuming insects, zooplankton and algae (Parichy, 2015). By 6dpf,

the vitellus lipids reserves are consumed and the larva needs to catch prey. This

vulnerability results in a mortality rate as high as 50% due to starvation at 12 dpf

(Bardach et al., 1972). This illustrates the ecological pressure which induced a rapid

and early development of functional sensory-motor circuits.

Compared to rodents or primates whose behaviors have been comprehensively eval-

uated and defined (Shettleworth, 2010), the description of zebrafish behavioral reper-

toire is still a developing field of research (Kalueff et al., 2013). Field observations of

zebrafish larvae behaviors are surprisingly rare. Most of what we know about their

behavior has been inferred from experimental studies in laboratory environments. The

simplest forms of goal-directed behavior are taxis. During taxis behavior, an animal

will try to reach a desired location in the environment. The location can be chosen

according to different properties, light in the case of phototaxis, chemical compositions

for chemotaxis or prey for telotaxis. I will focus on visually induced taxis in zebrafish

larva.

The optomotor response

The optomotor response (OMR) is common to fish and insects, animals that could be

carried away be air or water streams. OMR designates a form of visual taxis whereby

animals follow the whole-field motion. This could allow larva to avoid being carried

downstream by the current. When presented with a whole-field moving stimulus, fish

will turn and swim in the direction of perceived motion thus maintaining a stable

image of the world on the retina and thus a stable position with respect to their visual

environment.

OMR can be reliably evoked from 5 dpf and is maintained throughout adulthood.

Thanks to the reliability of its responses, OMR has been widely used to conduct large

scale genetic screens (Muto et al., 2005), study the psychophysics of vision (Orger and

Baier, 2005), reveal the reticulospinal circuitry controlling movements (Orger et al.

(2008), Severi et al. (2014)), confirm the cerebellum’s role in processing discrepan-

cies between perceived and expected sensory feedback (Ahrens et al., 2012a) and to

implicate the dorsal raphe in different states of arousal (Yokogawa et al., 2012).
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The prey-capture behavior

Four days after fertilization, zebrafish starts hunting potential food. This behavior is

critical for survival and relies on several decision-making processes. The first step is

the visual recognition. Larvae rely mostly on vision to capture prey, as demonstrated

by the dramatic decrease in the number of prey eaten in the dark (Gahtan et al.,

2005). Small moving dots (4° diameters) will elicit specific locomotor and oculomotor

movements intended to position the larva in front of its prey (Figure 1.8.A,B), on

the contrary, big dots will elicit turns away from the stimulus (Bianco et al., 2011a).

After recognition, the larva will initiate a bout to bring the paramecia in front of it.

Succesive bouts will bring the paramecia progressively closer (Figure 1.8.C). The

capture itself will occur via suction or bitting depending on the relative position of

the prey (Patterson et al., 2013). Prey capture is a highly flexible behavior, zebrafish

can bias the speed, intensity and directionality of their movements based on visual

cues. Figure 1.8 shows how the direction of movements is gradually adjusted to the

relative position of the prey.

Semmelhack et al. (2015) found that AF7 (arborization field 7) displayed an in-

crease in activity specific to the detection of prey-like stimuli. Neurons in AF7 receives

input from the retina and project to the optic tectum (OT, AF10), nMLF and the

hindbrain. The OT is the largest recipient of retinal projections, it presents a complex

layered structure with a retinotopic organization. The OT respond to a wide variety

of stimuli (Gabriel et al. (2012), Muto et al. (2013)).

By presenting a battery of visual stimuli with different features (direction, speed,

polarity of contrast and size), Bianco and Engert (2015) found that neurons in the

OT showed a non-linear mixing of selectivity for different features relevant for prey

detection. A different set of neurons in the OT anticipated eye convergence indicative

of prey detection.

Although the neuronal circuits underlying detection of prey have been revealed,

little is known about the neuronal activity during the approach nor the computations

underlying the decision to pursue or not a prey.
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A B C

Fig. 1.8: Flexibility of locomotor actions during prey capture. (A) Diagram
illustrating the prey azimuth θprey and the corresponding turn angle φpred. (B) Scat-
ter plot of the orientation of the initial turn as a function of the prey azimuth. Lar-
vae performed gradual turn but consistently underestimated prey location. The in-
formation about the prey location is reliably transposed into a corresponding mo-
tor command. (C) Frames from high-speed video illustrating differences in the di-
rectionality of movements following the initial orientation turn. The red and blue
curves represent the position of the head and the caudal part the tail respectively.
The white dot indicates the location of the paramecia. The larva continuously ad-
justs its trajectory to the prey location during the prey capture sequence. Adapted
from Patterson et al. (2013).
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Phototaxis

Phototaxis is the ability of an organism to move toward (positive phototaxis) or away

(negative phototaxis) from a light source. Phototactic responses are observed across

taxa, from bacteria and plants to vertebrates. This basic form of goal-directed behav-

ior is also present in the zebrafish larva (Figure 1.9.A,B).

Using fine behavioral characterizations of wild-type and mutant larvae, the lat-

ter showing a selective disruption of the retinal ON or OFF pathways, Burgess et al.

(2010) showed that two distinct retinal pathways are driving phototaxis. ON retinal

ganglion cells are active following an increase in light intensity. They control the rate

of approach by activating forward scoots. The OFF pathway, sensitive to the decay

in lighting deploys contralateral turns. A simple input-output relationship would thus

be enough to account for the trajectory of the larva toward the light (Figure 1.9.C).

Recent behavioral studies have shown a form of phototaxis performed by larvae in

absence of a spatial gradient (Chen and Engert, 2014). In this setup, the presence of

a larva inside a virtual border (circle) caused the whole field to be illuminated, and

when the larva stepped out of this border, the light was turned off (Figure 1.9.D).

After swimming out of the circle, the larva was capable of returning to the illuminated

area in a directed manner (Figure 1.9.D). To explain this rudimentary form of path

integration, the authors employed two hypotheses : 1) A mechanism similar to the

ON/OFF pathways, where the larva preferentially performs turns (respectively for-

ward scoots) following an illumination intensity decay (respectively increase) (Figure
1.9.E). But this explanation is not sufficient to account for the ability of larvae to re-

turn inside the virtual border by performing an efficient turn 70% of the time (Figure
1.9.F). 2) The mechanisms employed to explain the efficiency of turn relied on the

larva’s ability to integrate some information about its recent swimming history (over

∼ 7s).

Building a robot performing phototaxis is straightforward, it just requires to con-

nect two light detectors with contralateral wheels. Unlike this simple mechanisms, the

detailed analysis of phototaxis behavior in larval zebrafish sheds light on the complex

navigation strategy at play that cannot be trivially reduced to successive mapping

between light intensity and motor commands.
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Fig. 1.9: Phototaxis in zebrafish larva. (A) Scheme showing the phototaxis be-
havior, larvae are maintained under uniform illumination and tested for phototaxis
by changing to a dark field with a light spot. The trajectories of nine larvae in this
essay are superimposed. (B) Mean larval distance to the target at 0.5 s intervals.
(C) Scheme of the mechanisms required for the larvae to perform phototaxis. The
retinal OFF pathway activates turn in the contralateral direction following a de-
crease in light intensity. The retinal ON pathway activates forward swim following
an increase in light intensity. (D) Upper panel: Scheme of temporal phototaxis, the
uniform illumination is turned off when the fish exits the virtual circle (red dashed
line) and turned on again when the fish returns. Lower panel: trajectory of a larva
during the essay. On the right: a close up view of the trajectory segments close to
the border. (E) Turning-angle distributions from on larva. Upper panel: all turns
in light. Lower panel: the first turn after Light-to-dark transition. (F) Upper panel:
illustration of "efficient" vs "inefficient" turns. In order to return to the light, the di-
rection shown by the green arrow is more efficient than the red arrow. Lower panel:
histogram of the per-fish "efficiency", the red dashed line marks the 50/50 probabil-
ity, the dashed cyan line marks the mean of the distribution. Adapted from Burgess
et al. (2010) and Chen and Engert (2014).
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1.5 Main aims

Most investigations on brain functions have focused on local circuits and S/R asso-

ciations (Sompolinsky, 2014). However, this framework is limited for understanding

behaviors that cannot be decomposed as a series of input-output association. The

zebrafish model provides the opportunity to study neuronal activity simultaneously

from multiple brain regions. This advantage may help to shed light on the complex,

non-linear and contextual effects underlying brain functions during behavior.

In the first part of this manuscript, I presented a method for VR in zebrafish

larva. This flexible behavioral paradigm enables the study of the chaining of locomotor

patterns underlying different goal-directed tasks: the optomotor response and prey

tracking. I also demonstrated how the timing of the visual feedback resulting from

motor actions is critical for the success of prey capture.

Experiments on spontaneous actions provide animals with restricted behavioral

options. This approach does not account for the decision-making process underlying

the complex temporal pattern of spontaneous actions occurring in natural behaviors

such as foraging. Zebrafish larva spontaneously generates movements in the absence of

sensory stimulation. Taking advantages of its small locomotor repertoire, I first quan-

titatively described the complex temporal patterns of spontaneous tail bouts. Then,

using selective plane microscopy, I monitored the neuronal activity from large portions

of the zebrafish brain preceding the onset of spontaneous movements. Preliminary re-

sults indicate that the selection of spontaneous locomotor action and their timing are

specified by different population of neurons.



Being virtually killed by virtual laser in virtual

space is just as effective as the real thing,

because you are as dead as you think you are.

Douglas Adams (1992). Mostly Harmless

Chapter 2

A visual virtual reality system for
the zebrafish larva

2.1 Introduction

The use of VR in zebrafish larva gives the opportunity to shed light on the role of

sensory feedback during goal-directed behaviors. Moreover, the combination of VR

with functional imaging would be useful to learn about the dialogue between the

sensory and motor circuits.

In walking animals, leg movements can be measured using a spherical treadmill in

head-fixed preparations (Figure 1.3). On the contrary, obtaining a readout of the dis-

placement intended by the tail movements of a zebrafish larva is not a straightforward

task. I developed a method to relate the tail movement kinematics to the intended dis-

placements of the larva, in a visual virtual environment, where the larva can perform

goal directed behavior. Recent works have used virtual reality in zebrafish larva (Por-

tugues and Engert (2011), Ahrens et al. (2012b), Ahrens et al. (2013a), Vladimirov

et al. (2014), Trivedi and Bollmann (2013)).

Two options were used to record motor activity illustrated in Figure 2.1. The

first option is to use "fictive swim", which involves recording in a bundle of motor

neuron axons (Ahrens et al. (2012b), Ahrens et al. (2013a), Vladimirov et al. (2014)).

Larvae turn using asymmetric tail oscillations. Therefore, the direction of the intended

movement was obtained by comparing the intensity of the signal recorded from both

sides of the tail. This method enabled larva to perform phototaxis and optomotor

response in a virtual 2D environment. The alternative is to monitor the tail movements,

when the larva is head-embedded in low melting point agarose using a high-speed

29
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Fig. 2.1: Recording intention of movement in zebrafish larva. (A) "Fictive
swim" setup. The larva is paralyzed and suspended using pipettes, the suction elec-
trodes record activity from motor neuron axons in both side. Adapted from Ahrens
et al. (2013a). . (B) Six frames showing the automated reconstruction of the tail of
a larva head-embedded in agarose. Adapted from Portugues and Engert (2011).

camera. This preparation was used to study motor adaptation during navigation in a

linear track where the larva could only move forward (Portugues and Engert, 2011).

There are several advantages of inferring the larva’s motion directly from the tail

movement’s kinematic rather than using "fictive swim". Firstly, due to the variation

in the positioning of the electrodes, fictive swim readout must be calibrated regularly.

Head-embedding larvae in agarose while leaving the tail free to move is simpler and

straightforward. Secondly, recording tail movements allows for post-hoc analysis that

cannot be computed in real time such as categorization of movements (Semmelhack

et al., 2015), or fine tracking of tail kinematics (Patterson et al., 2013). Finally, ze-

brafish swim is composed of discrete episodes of propulsion interleaved with periods

of inactivity, the use of the fictive swim method requires setting a threshold on motor

nerve electrical activity. A drawback of letting the tail move is that the head fixation

exerted mechanical constraint during movement which are absent in freely swimming

larva. Additionally, the "fictive swim" method is advantageous because the paralysis

allows for more stable recording of the brain activity.

In order to relate the tail kinematics to the intended displacements of the larva, I

monitored freely swimming larvae and extracted the relationship between tail move-

ment and change in orientation and position. I then used this relationship in head-

restrained larvae. While monitoring their tail movements and computing, in real
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time, the intentional displacement in order to update to the visual environment dis-

played around the larva. I demonstrate that this method enables the larva to interact

meaningfully with its visual environment in different behavioral contexts. The larva

maintained the proper speed and orientation in presence of whole-field motion and

produces fine changes in orientation and position required to capture virtual preys.

I also illustrated how alteration of the sensory feedback can be used to investigate

neuronal process underlying navigation.
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Fig. 2.2: ]
Quantification of tail movements], legend next page
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Fig. 2.2: (Previous page.) Each row depicts a movement from different category.
(A) Superimposition of image of the larvae during a tail bout. The trajectory of
the head is shown by a white line, the black arrows represent the head orientation at
the beginning and end of the bout. (B) Illustration of the image processing method
on a characteristic snapshot of the movement in (A), an ellipse is fitted on the bi-
narized larva (in black). Pixels are split in two groups according to the small axis
of the black ellipse: pixel shown in red or blue overlaid on the larva. On those two
groups of pixels, an ellipse in fitted (red and blue ellipse) and the corresponding
small axis are drawn in red and blue line. The center of curvature (black dot) is de-
fined as the intersection between the small axis. From this point the deflection is
defined as the inverse of the average distance between all the pixel in the fish and
the center of curvature (1/R). The result is multiplied by the length of the fish at
rest L0 in order to obtain a dimensionless value. The sign of the deflection is com-
puted according to the convention indicated in the inset .(C) Deflection of the tail
associated with each movement.
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2.2 Results

2.2.1 Prediction of the larva’s trajectory from the kinematics

of tail movements

Zebrafish larvae navigate by producing discrete stereotypical tail movements called

swim bouts. Larvae do not track moving gratings faster than 10 Hz (Rinner et al.,

2005), this indicates that a refresh rate of 60 Hz from a video projector is sufficient

to accommodate the temporal acuity of zebrafish vision. The typical frequency of

oscillations of the tail during a bout in restrained larvae is 20 to 30 Hz (Severi et al.,

2014). In order to provide a real-time feedback, the tail kinematics should be filmed at

high acquisition rates (above 200 Hz), and the processing of the acquired images must

be computed in just a few milliseconds. The Reynold’s number of swimming larvae is

between 50 and 900 Re, which puts them in a transitional flow regime (McHenry and

Lauder, 2005), thus neither inertial nor viscous forces can be neglected. Approxima-

tions in flow regime could enable to compute, in real time, the thrust generated by

the tail movements of an adult fish (Bergmann and Iollo, 2011). However, computing

the thrust in transitional flow regime is so far unachievable.

To predict trajectories from tail kinematics, I used a data-driven approach to learn

the relationship between tail movements and fish kinematics in the horizontal plane. I

recorded the displacement and tail kinematics from freely swimming larvae in shallow

water to generate a large library of movements. Paramecia were also introduced to

induce the larvae to generate prey-capture behaviors (5% of the library). Our library

of movements consisted of ∼ 300 tail bouts from 6-8 days post fertilization wild-type

larvae. The shape of the tail was quantified by computing the tail deflection using a

method developed by Raphael Candelier. Figure 2.2 shows the time series of the tail

deflection associated with stereotypical movements. This quantification of tail kine-

matics was fast (∼ 1ms/frames with 100 px square image in C++), and it resulted in

a low-noise, smooth and oscillating times series. To describe the change in orientation

and position of the larva in the swimming plane, I have used 3 parameters: axial, lat-

eral and yaw speed (Figure 2.3.A). Figure 2.3.C shows the kinematic parameters

for freely swimming larvae associated with 4 different types of movements. Kinematic

parameters were chosen to be smooth oscillating time series during swim bouts.

To identify the relation between the oscillating tail deflections and changes in

orientation and position, I used an auto-regressive model with external input (ARX
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Model, Ljung (1998)). This technique can predict the value of a kinematic parameter

(axial, lateral or yaw speed) using a linear combination of both the past value of the

kinematic parameters and the past and current values of the tail deflection (Figure

2.3.B). Thus, a simple regression is needed to fit the relationship between the tail

deflection and the resulting trajectories.

To assess our model, I predicted the trajectories in the test dataset of free-swimming

larvae using only the tail deflection. The resulting trajectories were then compared to

the actual trajectories of the larva. Figure 2.3.C shows that the trajectories resulting

from different categories of tail movements can be fitted using the same model. Errors

accumulates such that the trajectory predicted from the tail deflection diverges from

the observed trajectory but the overall kinematics were similar.

The quality of the predictions of the final orientation and position after a tail bout

is shown in Figure 2.3.D. I computed the error between predicted and observed path

using bootstrap between a test and a train dataset. The error in the prediction of

the direction of movements had a standard deviation of 19.41◦ (Figure 2.3.D.ii), a

similar standard deviation of 23.41◦ was observed in the prediction of the change in

the larva’s head direction (Figure 2.3.D.i). The difference between the predicted

and observed amplitude of the movement had a standard deviation of 0.3 mm which

represent 1/10 of the body length of the larva (Figure 2.3.D.iii).

To create the visual VR system, I head restrained the larvae in a drop of low-

melting agarose and place in a recording chamber (see Material and Methods). The

tail movements were then filmed with a high-speed camera at a frame rate of 200 Hz.

Using the ARX model, I inferred the changes in kinematic parameters resulting from

tail movements. This was used to update in real time the patterned visual stimuli dis-

played around or below the larva using a pico-projector. I used a custom program in

C++ using OpenCV to process images and OpenGL to display the visual environment.

Due to the flexibility of this method, I was able to study different types of visual

behaviors. All the routines required for the analysis of the library of movements and

the generation of the ARX model were computed in an IPython Notebook to reproduce

the data analysis and they could be adapted to the need of specific experimental

paradigms. As a proof of principle, I tested the VR system using two different visual

behaviors: The optomotor response and prey-capture behavior.
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Fig. 2.3: Prediction of trajectory from tail movements, legend next page
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Fig. 2.3: (Previous page.) (A) Parametrization of the displacement of the larva in
the horizontal plane. Only 3 parameters are required to describe the trajectory: the
axial, lateral and yaw speed. (B) Illustration of the Auto-regressive Model with Ex-
ternal Input. Each of the three parameters of trajectory is computed using the tail
deflection. Each of the kinematic parameters at time t, K(t) is computed using a
linear combination of its past values: K(t − dt), K(t − 2.dt),..., K(t − n.dt) and the
present and past values of the tail deflection: T (t), T (t − dt),..., T (t − n.dt). See Ma-
terial and Methods for details. (C) Four examples of trajectory and the associated
kinematic parameters observed (in blue) and predicted from the different tail move-
ments (in red). (i) Tail deflection corresponding to different categories of movement.
(ii) Axial speed observed (blue) and predicted (red). (iii) Lateral speed observed
(blue) and predicted (red). (iv) Yaw angle observed (blue) and predicted (red). (D)
Distribution of the prediction error in the position and orientation resulting from a
tail bout. (i) Error in the prediction of the change in head orientation. (ii) Error
in the prediction of the direction of movement. (iii) Error in the prediction of the
amplitude of a tail bout. The results presented in (C) and (D) were taken from the
test dataset.
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2.2.2 Optomotor response in a two-dimensions visual virtual

reality system

The optomotor response, a visual component of rheotaxis, is a highly reproducible

behavior in zebrafish larva. Presenting a moving grating below the larva elicits a

movement in the same direction. I tested whether larvae were capable of orienting

towards and follow a moving grating stimulus in the VR.

The speed of the grating (1 cm/s) and its spatial period (1 cm) were chosen ac-

cording to previous studies (Portugues and Engert (2011), Ahrens et al. (2013a)). At

the beginning of each trial, I randomly chose the angle between the initial orientation

of the grid movement and the head direction of the larva (between −180◦ and 180◦).

During the stimulation, the speed and orientation of the grid was updated according

to the tail movements of the larva. The stability of the trajectories in the VR was

improved by applying a gain of 3 to the axial speed. Each experiment consisted of 120

trials, each trial was split into periods of visual stimulation of 6s and resting periods

of 20s.

Using this paradigm, we found that when the whole-field motion was aligned with

the larvae, they displayed a shorted response time before the first bout (Figure 2.4.F).

During the stimulation, larvae maintain an average speed of 0.15 cm/s in the direction

of the grid. They produced on average 3 bouts per trial (3.26, N=549, from 9 larvae)

and the average bout duration was ∼ 300ms (0.313ms, N=1783, from 9 larvae), which

is consistent with previous report (Severi et al., 2014).

As expected, the distribution of the angles between the larva and the grating’s

direction deceased with time (Figure 2.4.C,D). Successive bouts brought the head

angle of the larva to an average deviation of 20◦ with the grid (Figure 2.4.G). Consid-

ering that the larva is aligned with the motion if the difference between the angle of its

head and the angle of the grid motion is lower that 30◦ (the deviation observed in free

swimming OMR, Ahrens et al. (2013a)). The proportion of aligned larva increased

by two folds during the 6 s trial (from 28.2◦ to 51.6◦, N=546, from 9 larvae, Figure

2.4.E,H).
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Fig. 2.4: Optomotor response in virtual reality, legend next page.
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Fig. 2.4: (Previous page.) (A) Scheme of the experimental setup. The tail is im-
aged using the combination of a high speed camera, an IR LED and a high-pass
filter to filter out the visual stimulation. A projector is used to display the moving
grid on a diffusive screen place 0.5 below the larva. The larva is head-embedded in
low-melting agarose at the bottom of a petri-dish, the tail is free to move. (B) The
grid is moving at 1 cm/s, the angle of the grid motion (Yellow arrow) relative to
the heading direction of the larva (green arrow) is θ. (C) Center panel: example of
angular trajectory for one larva. Left panel: Initial distribution of θ for the same
larva. Right panel: Final distribution of θ. (D) Initial distribution of θ for all larvae.
Center panel: color-coded density of θ as a function of time for the 6s trials. Right
panel: Final distribution of θ for all larvae. (E) Proportion of fish aligned with the
grid (|θ| < 30◦) as a function of time during the trial. The time scale is common
to (C), (D) and (E). (F) Histogram of response time as a function of the initial ori-
entation of the θ, error bar indicate the s.e.m. (G) Average of the deviation |θ| for
successive bout, the error bar indicate the s.e.m. (H) Average percentage of trajec-
tory aligned with the grid (θ ∈ [−30◦, 30◦]) at the beginning and end of trial for each
larva. In all panels, only the trials where the larva initiated at least one tail bout
were considered.

2.2.3 Prey-capture behavior in two-dimension visual virtual

reality

Zebrafish larvae begin to hunt paramecia after 5 days post fertilization, just two days

after hatching. This visually driven behavior is crucial for their survival. After detect-

ing a prey, the larva orients itself towards the prey and uses forward scoots and J turns.

The larva executes a capture maneuver and swallows its prey when the paramecia is

closer than 400 µm.

Under head-restrained conditions, the larvae could perform orienting and pursuit

maneuvers toward the pseudo-paramecia in a visual virtual environment (Figure

2.5.A,B). Each trial mimicked a situation where a 100 µm paramecia appears 1.5

mm away from the larva. In this configuration, the apparent angle of the paramecia

(diameter of 4◦) was presented to optimally elicit a prey-capture behavior (Bianco and

Engert (2015), Semmelhack et al. (2015)).

At the beginning of each trial, we projected on the circular screen a 4◦ circular

black spot moving on a white background at an angular speed of ±90◦/s along the

azimutal plane. The angular velocity of 90◦/s is not consistent with the speed of mov-

ing paramecia (∼ 100 µm/s) at a distance of 1.5 mm from the larva, but it has been
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shown to be optimal to elicit prey capture (Semmelhack et al., 2015). It is possible

that this optimal speed results from the relative velocity between the larva and the

paramecia when the larva is actively foraging. Right after the onset of the larva’s first

tail bout, the angular speed of the prey inj the virtual environment was set to 0◦/s

and the change in size and position of the black circle projected on the screen were

computed according to the predicted trajectory of the larva. Figure 2.5.B illustrates

the experimental design. If the larva oriented itself toward the virtual paramecium,

the circle projected then reached the center of the field of view of the larva and its

radius increased as the larva swam in its direction. We considered that a larva cap-

tured the virtual prey if its trajectory in the virtual environment was closer than 400

µm from the virtual prey (the corresponding apparent angle of the virtual prey would

have a diameter of 15◦).

Each experiment consisted of 250 trials, with each trial ending after a success-

ful capture or when the angle between the head angle and the virtual paramecium

exceeded 90◦. We found that larvae produced at least a tail movement in 14% of

the trials (13.8%, N=6750, from 27 larvae), which is consistent with previous reports

(Bianco et al. (2011b), Bianco and Engert (2015)). For trials where the larva initiated

a tail movement, larvae were able to capture the virtual preys on average 16% of the

time, and up to 40% for the best performing larvae (Figure 2.5.E). By shuffling

the trajectories with respect to the position of the prey as a control, we showed that

random trajectories could reach the final target with a 5% change (Figure 2.5.E).

We could also reproduce previously described characteristic of prey-capture behaviors

in freely swimming larvae. Larvae preferentially initiate the first tail bout when the

prey was in a field of view of ±30◦ (Figure 2.5.F). The larvae performed in average

3.6 bouts (N=99 successful trials, from 27 larvae) to capture the virtual prey. The

trajectory of larvae in the virtual environment were graded according to the azimuthal

position of the virtual prey (Figure 2.5.C,D).

As observed in freely swimming larvae, the bouts coarsely bring the paramecia in

front of the larva and successive smaller correcting bouts bring the paramecia progres-

sively closer (Figure 2.5.G, Patterson et al. (2013)). Bout durations were on average

180ms (182ms, N=1358 from 27 larvae) which was significantly lower than for OMR

(0.313ms). Moreover, successful virtual prey captures were associated with an increase

in eye convergence during the first two bouts (Figure 2.5.H), as reported in freely

swimming conditions (Trivedi and Bollmann, 2013).
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Fig. 2.5: Prey-capture in virtual reality, legend next page.
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Fig. 2.5: (Previous page.) (A) Scheme of the experimental setup. The larva is po-
sitioned on an elevated stage surrounded by a cylindrical screen covering a field of
view of 180◦ centered around the larva’s head direction. The tail is imaged using the
combination of a high speed camera, an IR LED. Two projectors are used to project
the virtual prey, each covering a field of view of 90◦. (B) Presentation of the virtual
environment presented in each trial. The virtual prey of 4◦ appears from either side
of the larva with an angular speed of 90◦/s. After the onset of the first tail bout,
the angular speed of the virtual prey is set to 0◦/s and the position of the virtual
larva in the screen is updated according to the tail movements. A trial is successful
if the larva approach the paramecium closer than 400µm in the virtual environment.
(C) Trajectory of a larva in the virtual environment, the individual trajectory in
each trial are color-coded according to the angle of the prey at the onset of the first
tail bout. (D) Overlay of the trajectory of the 27 larvae in all trials. Each bin of
the mesh grid is color-coded according to the average position of the larva for the
trajectory in the bin. The dynamic range is reduced to [−35◦, 35◦] in order to show
the gradation of trajectory according to the position of the paramecia. In (C) and
(D) the black arrows indicate the initial position of larvae. (E) Violin plot of the
percentage of trials that resulted in a capture. Only the trials where larva executed
at least one tail bout were considered. Right: Each dot shows the performance of
individual larva. Left: The performance obtained by shuffling the angular positions
of the virtual prey. (F) Histogram of the angle of the prey at the onset of the first
trial. (G) Change in head orientation for the first three bouts. (H) Change in eye
vergence occurring before each of the first three bouts. In (G) and (H), only the
trial where larvae performed at least three bouts were considered. Error bar indicate
the s.e.m.

2.2.4 Integration of visual information during tail bouts

In absence of vestibular input, external landmarks can provide a feedback on the

result of a motor action by comparing the visual scene before and after a movement.

An alternative strategy is to have a continuous update on the action rather than a

discrete one by integrating the angular speed of the visual environment during the

movement. Computing the cumulative rotation would, however require the visual

system to integrate over large angular displacements while the amplitude of oscillations

of the head can reach velocities of up to 4000◦/s during a turn (Figure 2.3.C.iv).

Previous studies have reported that the larva is less sensitive to sensory feedback

during movement, and uses visual feedback in-between swim bouts to compare the

observed and the expected position (Trivedi and Bollmann, 2013). To test whether

visual feedback is not used by the larva during swimming, I altered the visual feedback

provided during the movements. We thus performed experiments in which the feedback
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was updated only at the end of the bout, when the speed was smaller than 0.2 mm/s

(Figure 2.6.A). In comparison to trials in which visual feedback was provided in real

time, the delay resulted in longer bout durations of 200ms (199.3ms, N=668, from 27

larvae,Figure 2.6.C,D). This subtle change in the visual feedback also decreased by

half the percentage of capture (Figure 2.6.B). Overall, these findings suggest that the

zebrafish larva is capable of integrating visual information during movements. These

results demonstrate the sensitivity of the zebrafish larva to visual feedback provided

during movement.

2.3 Materials and methods

Zebrafish preparation

Experiments were performed on 6-8 dpf larvae of a transgenic Nacre line. Embryo were

collected and raised at 28◦C in E3 embryo medium, larvae were kept under a 14/10 h

on/off cycles and fed with paramecia after 5 dpf. All experiments were approved by

Le Comité d’Éthique pour l’Éxpérimentation Animal Charles Darwin (Ce5/2009/027).

For VR experiments, larvae were embedded in low-melting agarose (2%) dorsal side

up in the center of the chamber. After the agarose had set, the chamber was filled

with embryo medium. For OMR experiment, the agarose around the tail was removed

up to the swim bladder using a scalpel, for prey-capture experiments, the eyes were

also freed from agarose.

Imaging of zebrafish movements

An IR LED (850 nm, IR dragon optic, Osram) was used to illuminate the larvae.

For imaging the eye and tail movements, I used a high-speed camera (200 frames per

seconds, M3 MotionScope, Redlake) mounted on a microscope (PZMIII-BS, World

Precision Instrument). The setup was placed on an anti-vibration table (Kinetic Sys-

tem vibraplane,2212). In freely swimming larva, the position and orientation of the

larva was computed by detection the eyes that present a distinct contrast in Nacre

larva. The tail movement were quantified using the method presented in Figure 2.2.

Quantification of the eye vergence was done by fitting an ellipse on each eye and

computing the difference between angle associated with each ellipse.
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Fig. 2.6: Alteration of visual feedback during movement. (A) Tail deflection
and corresponding visual feedback: angular position and size of the virtual prey.
Left panel: the feedback are continuously updated during the tail movements (the
red curve). Right panel: the feedback are delayed until the end of a bout (time in-
dicated by the vertical dashed line). The red square-form curve indicate the detec-
tion of tail bouts. (B) Percentage of trials leading to a capture for all 27 larvae, in
real-time (left) and delayed (right) feedback conditions. (C) Cumulative distribu-
tion for real-time (blue) and delayed (red) feedback. (D) Average bout duration
with real-time and delayed feedback. The error bar indicate the s.e.m. A Mann-
Whitney test was used to compare the distribution of bouts duration in both con-
ditions (p ≈ 8.10−6).
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Visual stimulation

A pico-projector (refresh rate of 60 Hz, P4x, Aaxa) was used for the visual stimulation

projected on the diffusive screen (N◦216, White diffusion, Rosco Cinegel). For the

OMR VR, the larva was immobilized the at the center of a petri dish. Stimuli consisted

of a square wave grating with a spatial period of 1cm at the maximal contrast projected

on a screen placed 5mm below the larva. For prey-capture experiments, the larva was

positioned on an elevated stage within a cylindrical chamber of 5 cm diameters. The

cylinder was covered with a diffusive screen. Two projector placed at 45° relative to

the larva’s head direction were used to project the visual environment. The position of

the projector was chosen to minimize the deformation when projecting a checkerboard.

Autoregressive Model with External Input

The Autoregressive Model with External Input is a time-domain system identification

model which has the following structure:

N
∑

k=0

aky(n − k) =
N

∑

k=0

bkx(n − k) + e(n)

In our case, y represent the output kinematic parameters (axial, lateral or yaw speed),

x is the input tail deflection and e is the error. The choice a0 = 1 ensures that the

resulting system is causal. The vector of the unknown parameters we seek to identify

is:

Θ = [a1, a2, ..., aN , b0, ..., bM ]T

We start by observing a system at rest. An input signal x(n) is fed into the system,

and the output y(n) is observed for the interval 0 ≤ n ≤ K.

y(0) = b0x(0) + e(0)

y(1) = b0x(1) + b1x(0) − a1y(0) + e(1)
...

y(n) =
N

∑

k=0

bkx(n − k) −
N

∑

k=1

akx(n − k) + e(n)

...

y(K) =
N

∑

k=0

bkx(K − k) −
N

∑

k=1

akx(K − k) + e(K)
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All these equations can be written as a large matrix equation:

DΘ = Y − E

Avec:

D =





























0 0 . . . 0 x(0) 0 . . . 0

−y(0) 0 . . . 0 x(1) x(0) . . . 0
...

...
...

...
...

...
...

...

−y(n − 1) −y(n − 2) . . . −y(n − N) x(n) x(n − 1) . . . x(n − M)
...

...
...

...
...

...
...

...

−y(K − 1) −y(K − 2) . . . −y(K − N) x(K) x(K − 1) . . . x(K − M)





























Y = [y(0), y(1), . . . , y(n), . . . , y(K)]T

E = [e(0), e(1), . . . , e(n), . . . , e(K)]T

Thus, the solution for θ is obtained by a linear regression that minimize the norm of

the error vector. For the lateral and yaw speed we chose N = 7, M = 7, the input

x was the tail deflection. For the axial speed, because this kinematic parameter was

mostly taking positive value, we used the absolute value of the tail deflection as the

input x with N = 20 and M = 7. The parameters N and M were chosen to maximize

the goodness of fit. The value obtain for the goodness of fit were R2
Lateral = 0.67,

R2
Axial = 0.79 and R2

Y aw = 0.72.
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circumstances, an animal will behave as it

damned well pleases.

The Harvard Law of Animal Behavior

Never send a human to do a machine’s job.

Agent Smith (∼ 2199). The MatrixChapter 3

Internally driven behavior in
zebrafish larvae

3.1 Introduction

In natural conditions, internal decision processes will select the type of action to

perform and the timing to execute it. From human daily tasks (e.g. e-mail commu-

nication) to animal foraging, the timing of internally driven actions follows complex

temporal patterns at multiple time scale rather than being simply a uniform or rhyth-

mic succession (Proekt et al. (2012), Goh and Barabási (2008), Sorribes et al. (2011)).

Experiments on internally driven behaviors are usually structured along trials, in each

trial the subject is free to choose the timing of a predefined action (for example poke

out or press a button). The small set of actions available in these studies in not

representative of the large repertoire of possible actions in unconstrained conditions.

Moreover, the trial-structure of these experiments does not permit the study of the

mechanisms responsible for the generation of complex temporal structures. Here, I

aim at understanding the process governing the timing and selection of motor actions

in absence of sensory stimuli.

Zebrafish is an ideal animal model to study internally-driven behaviors and the

underlying mechanisms predicting them. In the absence of salient sensory cues, the

zebrafish larva spontaneously produces tail movements. Their limited locomotor reper-

toire allows studying the natural action-selection process without imposing restrictions

on the actions available. Moreover, their optical accessibility and small size is ideal

for the study of how endogenous neuronal activity shapes behavior.
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In the optic tectum of the zebrafish and, despite the absence of retinal drive, spon-

taneous activity is topographically organized in compact assemblies of functionally

similar neurons showing all-or-nothing activations patterns (Romano et al., 2015). Us-

ing optic fiber to activate neurons in larva expressing Channelrhodopsin, Fajardo et al.

(2013) showed that activation of neurons in the anterior-ventral optic tectum induced

J-Turn tail bouts.

In the hindbrain, neurons involved in the control of swimming have been found to

present spontaneous oscillation where bilaterally clustered neurons oscillate in opposi-

tion of phase with a typical period of ∼ 20s (Ahrens et al., 2013b). Optically evoked

activity in larva expressing Channelrhodopsin in V2a neurons was sufficient to trigger

tail movement (Kimura et al., 2013). Electrical activation of neuron in nMLF triggers

tail movements with oscillation depending on the strength of the electrical stimulation

(Figure 1.7.B, Severi et al. (2014)).

Despite these pathways from the midbrain and hindbrain to the spinal cord, several

mechanisms could explain how spontaneous neuronal activity does not systematically

trigger a movement. A first hypothesis would be that spontaneous activity lies below

some spinal activation threshold in absence of movements. Another possibility could

be that spontaneous activity is nullified by an inhibitory gate, as it was shown for

the brainstem oculomotor system (Evinger et al., 1982). In zebrafish, activity in hy-

pothalamic dopaminergic neurons can increase the excitability of Mauthner neurons

in response to auditory stimuli (Mu et al., 2012). Projection of dopaminergic neurons

from the caudal hypothalamus to the hindbrain could play a similar role in gating

spontaneous behavior. Finally, a study of cortical activity in the primary motor cor-

tex and dorsal premotor areas has revealed that, while the animal is not moving, motor

cortical activity cancels out at the level of the population (Kaufman et al., 2014). In

this case, distinct patterns of collective activity control the communication with the

muscles and between brain areas.

In order to study the internal decision process underlying spontaneous locomotor

actions, I first quantified the temporal and sequential dynamics of tail movement. In

the second part, using Selective Plane Illumination Microscopy that enables monitor-

ing neuronal activity from very large neuronal circuits from different brain regions, I

recorded and analyzed neuronal activity prior to the onset of spontaneous movements.
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3.2 Internally driven behaviors of zebrafish larva

In order to study the neuronal basis of internally driven behaviors, I first investigated

the organization of spontaneous behavior. After quantifying their kinematics, I devel-

oped a method for classifying tail movements. This allowed me to study the chaining

of events during spontaneous behavior.

For this purpose, the behavior of 25 head-restrained larvae was monitored for

a period of 4h. During the first hour, visual stimulations consisting of whole-field

motion or dark flashes were presented in order to observe visually induced behavior.

For the last 3h, a homogeneous non-patterned illumination was projected below the

larva (Figure 3.1). This experiment enabled me to collect 16000 individual bout

movements.

3.2.1 Locomotor repertoire of zebrafish larva

I developed an automatic method to quantify the locomotor repertoire of head-restrained

zebrafish larva, which allowed me to study the temporal structure of internally driven

locomotor action.

Quantification of tail movements

Quantifying locomotor action requires choosing an appropriate level for the move-

ment’s description, between the most detailed analysis of muscle activations to the

simple binary detection of movements. In order to quantify the variety of sponta-

neously generated movements, I needed to estimate how similar or different two move-

ments were. To that end, I computed both the curvature along the tail and the

deflection index. The method to compute the deflection index is presented in Figure
2.2.In order to compute the curvature, I adapted the technique presented in Huang

et al. (2013). To find the "skeleton" of the larva’s body, I calculated the barycenter

of the larva’s image along a circle weighted by the pixel’s intensity. The first circle

was centered to a position between the eyes. By iteration, the skeleton of the fish

was obtained (Figure 3.2.A). A cubic spline was fitted along the skeleton and the

curvature was computed along this curve. Both techniques were implemented in real

time in C++ in order to reduce the amout of post-processing analysis.
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Fig. 3.1: Visually induced and spontaneous tail deflections. (A) The exper-
imental paradigm showing periods of visual stimulation and absence of stimulation.
Visual stimuli were presented below the larva during the first hour. The first stim-
uli consisted of 15 repetitions of whole-field motion at −45◦, +45◦, 135◦ and 225◦

angles relative to the head axis. Dark flash stimuli consisted of a sudden change in
the background illumination from brightness to darkness, it was repeated 40 times.
Then the visual background was left constant for 3h. (B) Example of tail deflec-
tion recorded during the experiment for one larva. The tail was active in both spon-
taneous and induced conditions. (C) Left panel: zoom in the red rectangle of (B).
Right panel: zoom in the green rectangle of (B) during the transition from "light off"
to "light on". Amplitude of the tail deflection were different for both stimuli.
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Fig. 3.2: Quantification of tail bouts. (A) Upper panel: A larva is overlaid on
the circles used to compute the skeleton of the larva’s body. The first center was
placed between the two eyes. Successive centers were computed as a barycenter of
pixel intensity on the successive circles. Lower panel: example of the positions of the
skeleton during a tail bout. Each skeleton represents a different time point during a
bout. The color dots represent the center of the circles in (A). (B) Evolution of the
tail curvature during a bout. At each time point, the curvature was computed ac-
cording to a cubic spline fitted along the skeleton. (C) Deflection index along time.
The same tail bout was used for the 3 panels.
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Similarity between tail movements

Using the curvature and deflection index, I established a measure of similarity between

movements. A similarity measure was necessary to find categories of movements. I

benchmarked two alternative measures: feature and distance based similarity.

The feature-based description of a tail movement added heterogeneous measure-

ments: tail bending, amplitude and change in orientation. In head-fixed larva, the

features can only use the time series of the tail curvature. Each bout was described by

a high-dimensional vector of these features. Its dimensionality was then reduced us-

ing principal component analysis (see Supplementary methods for details and Figure
3.3.A).

The distance-based approach uses Dynamic Time Warping (DTW) to compare the

time series of tail deflection. DTW is a similarity measure between time series that is

robust to small deformation of the time series. In contrast, with euclidean distance,

the main advantages of DTW is that it recognized similar shapes, even when the time

series present signal transformation such as shifting or scaling (see Supplementary

methods for details and Figure 3.3.A).

Figure 3.3.B shows the nearest neighbors using both methods for three reference

tail bouts. Despite the fact that the DTW neighbors were computed using the deflec-

tion index alone, it was sufficient to recover neighbors that shared similar curvatures.

The distance obtained from features of the curvature and the similarity based on DTW

of the deflection index had a correlation of 0.77. Thus, I chose to use DTW to mea-

sure similarity because it is more direct and does not rely on an arbitrary choice of the

different bout’s features. I then performed cluster analysis in order to define different

movement categories.
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Fig. 3.3: Comparison of Feature and DTW-based similarity measurements.
(A) Scheme of the procedure used to compute the feature and DTW similarity mea-
surements. Upper panel: feature vectors were extracted from the curvature matrix
using the procedure described in Supp Methods, after a projection of the feature
vectors on the 15 principal components with the highest variance. The euclidean dis-
tance in the principal components’ subspace was finally computed. Lower panel: the
dynamic time warping was computed from the deflection index of the tail using the
algorithm described in Supplementary methods. (B) Each rows shows the nearest
neighbor of three reference movements (in red) computed using features-based dis-
tance (in blue) and DTW similarity (in green). In each row, individual tail bouts
were represented using the tail deflection index and the corresponding tail curvature
(below). Arrows indicat the caudo-rostral axis. The colorbar is common to all curva-
tures.
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Classification of tail movements

The goal of clusterization is to find groups of movements that are more similar with

each other than to those in other groups. Each tail deflection index was duplicated

to its opposite in order to obtain a symmetric library of movements. Figure 3.4.B

shows the t-distributed stochastic neighbor embedding (t-SNE) of all tail movements

recorded. This method embedded high-dimensional data into a two dimensional repre-

sentation where each point corresponds to a tail movement (see Supplementary Meth-

ods for details). The axis in the t-SNE embedding should not be interpreted, but the

local distances between points in 2D reflect the similarity between the movements that

they represent. Thus, neighboring points correspond to similar tail movements.

This visualization did not reveal clearly isolated groups of points or density local

maxima, but rather a continuum between tail movements (Figure 3.4.B,C). Unsu-

pervised classification methods, such as k-mean or density based clustering (Rodriguez

and Laio, 2014) isolated a cluster formed by forward scoot, but failed to find the other

categories of movement. Therefore, I used supervised clustering to define categories.

Supervised techniques infer the category of a movement using a set of manually

labeled movements (Keller et al., 1985). I chose 8 categories: scoot (symmetric),

asymmetric scoot (positive or negative), routine turn (positive or negative), C bend

(positive or negative) and burst (symmetric). J turns (Table 1.2) were associated

with asymmetric scoots or routine turns depending on their amplitude. Escapes were

grouped along with bursts.

In order to account for the continuity between categories, I used a soft-clustering

algorithm: the fuzzy K-nearest neighbor (see Supplementary Methods for details). Us-

ing soft-clustering, a movement can belong to more than one cluster, thus it is defined

according to a set of membership levels. For each movement, the membership level

associated with a category can be interpreted as the probability that the movement

belongs to this category. The category of a movement was attributed according to the

highest membership value.

This method resulted in an accuracy in classification of the movements of 82%

estimated using cross-validation. Cross-validation consisted in iteratively removing

the manually labeled tail bouts of one larva (the test set) and comparing its label to

the label inferred from the remaining library of tail bouts (the training set). Figure
3.5.A shows the misclassification matrix, errors in classification occurred mostly be-

tween neighboring clusters, e.g. scoot movements were unlikely to be classified as a
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burst. Moreover, the maximal value of the membership was lower for misclassified

movements than for well classified ones (Figure 3.5.B). Thus, errors in classification

occurred mostly when there was an ambiguity between the membership levels. I then

colored movements in the t-SNE according to their membership, the geometry of the

2D embedding was nicely represented by the membership (Figure 3.5.C). It should

be noted than the representation obtained by t-SNE was not used for the classifica-

tion but only for visualization purpose. The classification relied only on the distance

matrix obtained using DTW (Figure 3.4.A).

I used cluster analysis in order to get a parsimonious description of locomotor

actions. The categories chosen are known to represent the action of distinct group of

neurons or different behavioral context (see 1.4.2). In contrast with previous studies

(Mirat et al. (2013), Budick and O’Malley (2000)), this method does not rely on the

trajectory of the larva and can therefore be applied to study movements performed in

conditions compatible with brain imaging.
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Fig. 3.4: Continuum of tail kinematics, legend next page
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Fig. 3.4: (Previous page.) (A) Distance matrix computed on the library of evoked
and spontaneous tail bouts. (B) t-SNE embedding of the distance matrix. Each dot
represents a tail movement. The red dashed line indicates the approximate position
of the axis corresponding to the symmetry between movements with opposite tail
deflection indexes. Inset shows the density computed in hexagonal bins. Note that
the density is homogeneous along all regions of the graph, suggesting that in head-
restrained conditions, the repertoire of the larva’s tail movements can not be classi-
fied in discrete movement types, but is rather follows a continuum. (C) Illustration
of the continuum between tail movements for a selection of 7 different tail bouts, a
symmetric version could be found in the other side of the dashed axis. The deflec-
tion index (top) as well as the corresponding skeleton (bottom) are displayed. The
position of the tail bouts in the t-SNE embedding is shown by an indexed circle.
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Fig. 3.5: Classification of tail bouts., legend next page
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Fig. 3.5: (Previous page.)(A) The misclassification matrix is a contingency table
of the error in classification obtained during cross-validation. Rows represent the
true category (defined by user) and columns represent the categories that were er-
roneously attributed during cross-validation. High values are centered around the
diagonal indicating that error occurred primarily between neighboring categories, es-
pecially between scoots and asymmetric scoots. (B) Upper panel: Distribution of
the maximum level of membership for movements in the test set. Lower panel: Dis-
tribution of the maximum level of membership for movements in the test set that
were misclassified. Errors in classification were associated with more uniform level of
membership suggesting ambiguity. (C) Movements in the t-SNE embedding graph
were color-coded according to their membership to the different categories. Each
of the 8 category of movements was associated with an angle (top). For each move-
ment, the average angle weighted by its membership values was computed and as-
sociated with the hue of its color (shown in the circular HSV colormap). The con-
vention for the laterality is indicated by the larva’s scheme corresponding to positive
or negative deflection indexes. Bottom left: t-SNE computed from the entire library
of tail bouts. Bottom right: t-SNE computed for only one larva. The axis in both
embedding graphs were different but displayed similar structures.
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Distribution of movements according to evoked or spontaneous conditions

In order to confirm that the choice of categories was relevant to study the behavioral

repertoire, I analyzed how stimulus biased the distribution of movements across cate-

gories (Figure 3.6). Compared to spontaneous movements, whole-field motion in the

caudo-rostral direction induced a large majority of scoot movements. In comparison,

the proportion of scoot movements was smaller when the grid moved in the rostro-

caudal direction. Finally, dark flashes induced a proportion of C bends 2.5 times

higher than during spontaneous behavors, consistent with previous reports (Burgess

and Granato, 2007).
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Fig. 3.6: Distribution of movements in induced and spontaneous condi-
tions. Each column shows a pie chart of the distribution between categories of
movements in spontaneous or sensory evoked conditions.

3.2.2 Chaining of spontaneous motor actions

When to act? Bursts and heavy-tail temporal dynamics

In the case of a regular process where the probability of occurrence of an event is

constant across time and events occur independently from each other, a Poisson pro-

cess parametrized by a single value describe the uniform probability of having an

event during a given time interval. In this case, the probability distribution of the

waiting time between one event and the next follows an exponential distribution. I

performed a detailed analysis of the temporal distribution of spontaneous tail move-

ments. These distributions showed that rather than regular, the timing of events was
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non-homogeneous. I observed two deviations from a homogeneous Poisson process: a

heavy-tail distribution and a bias for increased activity after an event.

Figure 3.7.A displays the distribution of inter-bout intervals (IBI). The IBI is the

time different between the offset of a tail movement and the onset of the next move-

ment. The distribution showed a clear deviation from Poissonian behavior (Figure

3.7.B). For long IBI, the distribution appeared to follow a Weibull distribution. The

Weibull distribution corresponds to a stretched exponential distribution whose expres-

sion is:

P (τ) =
u

τ0
(

τ

τ0
)u−1 exp(−(

τ

τ0
)u)

Two parameters characterize the Weibull distribution, the scale τ0 and the shape u.

The scale parametrizes the characteristic decay time. The shape parameter describes

the degree of burstiness. Poissonian processes have a shape value u = 1. u < 1 is a

hallmark of heavy-tail distributions. For each larva, the IBI distribution was correctly

fitted by a Weibull distribution (Goodness of fit R2=0.8 (mean) ±0.2 (s.d)). All larva

displayed a heavy-tail distribution with u=0.53 (mean) ±0.12 (s.d).

In order to study the occurrence of tail movements over short IBI, I computed the

hazard rate:

h(t) = lim
dt→0

P(t < IBI < t + dt|IBI < t)
dt

=
P(t < IBI < t + dt)

dt · P(IBI < t)

The hazard or failure rate is commonly used in demography or risk analysis, it gives a

natural way to interpret the chance of occurrence of an event. For exponentially dis-

tributed waiting time in an homogeneous Poisson process, the failure rate is constant.

For a Weibull distribution, the hazard rate is a monotonic function:

h(t) =
u

τ0
(

t

τ0
)u−1

Figure 3.6.C displays the hazard rate computed for the IBI which shows a peak

around 3s. The location of the peak was 2.95s (mean) ±1.91s (s.d). However, 10% of

the larvae did not display a local maximum in the hazard function. The maximum

near zero indicates a bias for IBI of a few seconds.

The temporal dynamics of spontaneous tail movements displayed a bimodal diver-

gence from a homogeneous Poisson process: a heavy-tail regime with long periods

of inactivity and a rhythmic succession between movements at short time intervals.

This burstiness could be induced by different underlying processes. For example, it
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could represent a model that combines multiple Poissonian processes with different

timescales or interactions induced by intrinsic correlations between successive IBI. In

order to test whether successive intervals of time were correlated, I computed the

autocorrelation of the IBI. The autocorrelation decayed rapidly and did not exhibit

any significant oscillatory behavior. A simple measure of the memory was shown by

the correlation coefficient of successive IBI time values. I measured a correlation of

0.044 (mean) ±0.153 (s.d). Thus, successive IBIs were, to a large degree, independent.

To further describe internally driven behaviors, I characterized the influence of the

categories of movement on the chaining between events.

What to do? Memory in the chaining of locomotor actions

The distribution of movements was highly biased, scoot and asymmetric scoots ac-

counted for 60% of the movements, routine turns represented 28% and C bends and

bursts accounted for 14% (Figure 3.8.A). Individual larvae showed different biases

toward movements of either large of small amplitude (the s.d of the percentage of

scoot across larva was ∼ 20%). The low percentage of bursts and C bends indicated

that, on average, larvae were not trying to escape from agarose but rather generated

spontaneous natural-like tail movements. Figure 3.8.B shows the chaining between

consecutive movements according to their category for one larva. The similarity be-

tween consecutive movements as a function of the IBI is shown in Figure 3.8.D,E.

Consecutive movements were more likely to be similar if the IBI was shorted than

∼ 10s (Figure 3.8.E. Similarly, Figure 3.8.D shows that consecutive movements

were more likely to have a similar laterality if they were chained within less than 10s

than for longer IBIs (p=0.93 ·10−3 using a Mann-Whitney test). The effect of chaining

was not uniform across categories (Figure 3.8.E), short IBIs were more likely to re-

sult in small movements (scoots or asymmetric scoots) than large movements (routine

turns, C bends or bursts).
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Fig. 3.7: Temporal chaining of tail movements. (A) Distribution of IBI pooled
across larvae. (B) Same distribution as (A) in log-log scale (blue). Green curves
shows the exponential fit of the IBI that follows a Poissonian process. The red curve
shows the Weibull fit of the IBI. (C) Hazard rate of IBI pooled across larvae as a
function of time. It would be constant for a Poissonian proces and monotonically
increasing or decreasing for a Weibull distribution. (D) Autocorrelation of IBI
(±s.e.m). The rapid decay indicates the independence of successive resting times.
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Fig. 3.8: Memory in the chaining of movements, legend next page
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Fig. 3.8: (Previous page.) (A) Percentage of the different categories of movements
during spontaneous behavior. (B) Chaining of movements for one larva. Each of
the five columns represent an initial movement, each sub-column corresponds to the
category of the following movement. For example, cyan points in the first column
represent transitions from scoots to C bends. The vertical position of a point repre-
sents the IBI between the initial movement and the following. A random jitter was
added in the horizontal direction for visualization purpose. Successive movements
were likely to belong to similar categories. (C) Matrix indicating what was defined
as a transition between similar or dissimilar movements. (D) The graph represents
the probability that a transition occurred between similar movements knowing that
the IBI was shorted than a given value (more formally the equation on top). It dis-
played a decay during the first 10s. Shadings indicates the s.e.m. (E) Small move-
ments represent scoots and asymmetric scoots. Large tail deflection movements in-
volve routine turns, C bends and bursts. The ratio of small movements (red curve)
over large ones (blue curve) was higher for short IBIs. The shading indicates the
s.e.m. (F) For IBIs shorter than 10s, the movements have a 74% chance to be to-
ward similar directions. For IBIs longer than 10s, this ratio was 61%. This proba-
bility was not 50% because larvae often displayed a bias towards one direction. The
error bars correspond to the s.e.m.

3.2.3 Supplementary Methods

Feature Extraction

To compute the feature of the curvature matrix of a tail bout, I concatenated features

from the time series of the curvature along the tail’s length. Each time series repre-

sented the curvature at a specific location of the tail, I computed statistical moments

up to the 4th order, maximum, minimum, number of peaks, number of zero cross-

ing and Fourier coefficients. After this, a PCA was applied and only the subspace

corresponding to the 15 largest components was kept.

Dynamic Time Warping

The DTW algorithm has earned its popularity by being an efficient similarity mea-

surement for time series in areas such as data mining (Keogh and Pazzani, 2000),

gesture recognition (Gavrila et al., 1995) or speech processing (Juang and Rabiner,

1993). DTW reduces the distance between the time series by warping the time axis.

Given two tail bouts for which the tail deflection index were X = (x1, x2, ..., xN ) and

Y = (y1, y2, ..., yN) with N = 30 corresponding to a bout duration T=150ms and

a sampling frequency Fs=200 Hz. DTW yield an optimal solution in O(N2) time.
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The algorithm starts by building the distance matrix C ∈ R
N∗N representing all pair-

wise distances between X and Y (Figure 3.9.A). Once the cost matrix is built, the

algorithms aims at finding the lowest energy path in the matrix (Figure 3.9.A).

The alignment path built by DTW was a sequence of points p = (p1, p2, ..., pK) with

pl = (ni, mj) ∈ [1 : N ]2 for l ∈ [1 : K] which satisfied the following criteria:

• Boundary condition: p1 = (1, 1) and pK = (N, N). The starting and ending

points of the path must be the first and last points of the sequences.

• Monotonicity condition: n1 < n2 < ... < nK and m1 < m2 < ... < mK . This

condition preserves the time-ordering of the points.

• Step-size condition: pl+1 − pl ∈ {(1, 1), (1, 0), (0, 1)}. This criteria limits the

shifts in time from large jumps.

DTW uses dynamic programming to find the path of minimal cost p∗:

DTW (X1:N , Y1:N) = C∗
p(X, Y ) = min(Cp(X, Y )| p is a warping path )

The optimal path p∗ is computed in reverse order of the index, starting with pL =

(N, N). Supposing that pl = (n, m) has been computed. In the case where (n, m) =

(1, 1), one must have l = 1 and the algorithm is complete. Otherwise,

pl−1 =















(1, m − 1) if n = 1

(n − 1, 1) if m = 1

argmin{DTW (X1:n−1, Y1:m−1), DTW (X1:n−1, Y1:m), DTW (X1:n, Y1:m−1)} otherwise

It should be noted that DTW is a similarity measure or a pseudo-metric. Unlike the

euclidean distance, it does not verify triangular inequality required for metric.

Fuzzy k-nearest neighbor classification (FKNN):

The k-nearest neighbor is the simplest non-parametric classification method (Derrac

et al., 2014). A class is assigned according to the most common class among its k-

nearest neighbors. In FKNN, a membership level ui is assigned to a tail movement x

using the following formulation:

ui(x) =

k
∑

j=1

uij

D(x,xj)4

k
∑

j=1

1
D(x,xj)4
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A B

C

Fig. 3.9: Alignment of tail deflection using DTW. (A) Cost matrix for the
time series of two tail deflection indexes in cyan and orange. The optimal alignment
path is shown in red. (B) An example of measurement of the euclidean distance for
the two time series of tail deflection in (A). The comparison point by point is unable
to recover the similarity between the two time series because of the small temporal
offset. (C) Optimal time alignment of the two sequences is shown in black.
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where i = 1, 2, ..., 5 corresponds respectively to the category : Scoot, Asymmetric

Scoot, Routine Turn, C Bend, Burst. xj are the tail bouts in the library of user-

defined labeled tail bouts (containing ∼ 800 tail bouts). The distance D is the DTW

distance. The factor 4 is used to weight the similarities and was found to minimize

the error in classification. We only consider the K = 10 first neighbors. The uij terms

represent the membership degree of the movement xj from the training set to the class

i. They are defined as:

uij(xk) =







0.51 + nj

K
· 0.49 if i = j

nj

K
· 0.49 if j 6= i

The value nj is the number of neighbors which belong to the j-th class. Thus even

tail movements that where manually labeled have a fuzzy membership to account for

error during the manual labeling. Note that the sum of memberships ui is equal to

1 making the interpretation as a probability straightforward. The direction (or bias)

of movements belonging to asymmetric categories : Asymmetric Scoot, Routine Turn

and C Bend was defined by the sign of
N
∑

t=1
x(t)3.

t-Distributed Stochastic Neighbor Embedding

Dimensionality reduction techniques such as PCA, multi-dimensional scaling or Isomap

minimize the deformation of large distances (Cox and Cox (2000), Roweis and Saul

(2000)). Similarity measurements such as DTW are more relevant at the level of the

local neighborhood. I chose t-SNE for visualization because it aims at minimizing local

distortions (Van der Maaten and Hinton, 2008). For t-SNE, the conserved invariants

are related to the Markov transition probabilities of a random walk performed on the

dataset. Specifically, it defines the probability of transition from a tail movement xi

to another xj , pj|i, to be proportional to a Gaussian kernel of the distance between

them:






















pj|i =
exp(−d(xi, xj)2/(2σ2

i ))
∑

k 6=i
exp(−d(xi, xk)2/(2σ2

i ))

pi|i = 0

Each σi is set such that all points have the same transition entropy : Hi =
∑

j
pj|ilogpj|i =

5. This parameter can be interpreted as controlling the number of neighbors consid-

ered, similar to K in the FKNN. Then, t-SNE places the points in the 2D euclidean

space where the transition probabilities qj|i are as similar to pj|i as possible. qj|i is

chosen, for technical reason, to be proportional to a Cauchy (or Student-t) kernel of
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the distance between points in the 2D space. This algorithm results in an embedding

that minimizes local distortions. pj|i with small values corresponding to dissimilar tail

movements will impose little constraints on the embedding. The complexity of the

method in O(N2) restricts its applications to datasets that contain no more 10 000

points. I used the Matlab implementation provided by the authors of the algorithm.
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3.3 Neuronal patterns predictive of spontaneous

behaviors

3.3.1 Methods

Understanding the neuronal mechanisms underlying internally driven behaviors re-

quires recording the neuronal activity preceding many spontaneous movements. In

the absence of external stimuli, a larva produces on average 80 tail bouts per hour.

Therefore, I needed to monitor behavior and neuronal activity over long periods of

time. Moreover, to study the involvement of different brain circuits in the genera-

tion of internal decision, it was necessary to monitor spontaneously dynamics of large

neuronal circuits from different brain regions. For this reason, I used Selective Plane

Microscopy (SPIM) in combination with transgenic zebrafish larvae expressing pan-

neuronally the genetically encoded calcium indicator GCaMP5, to record neuronal

activity. I performed preliminary experiments in the Laboratoire Jean Perrin. I later

built a custom SPIM in my laboratory and performed additional experiments. The

methods and preliminary results described in this thesis concern the latter.

Recording neuronal activity using SPIM

SPIM possess several advantages over point scanning microscopy techniques (Panier

et al. (2013), Ahrens et al. (2013b)). The low numerical aperture (NA) of the exci-

tation beam causes less photodamage than for typical high-NA beams used in point-

scanning microscopy. Moreover, SPIM records signal simultaneously from different

points. Thus, collecting the same signal requires a weaker laser power used than for

point-scanning microscopy. This allowed me to record neuronal activity for up to 6h

with little phototoxicity (Figure 3.12.A). Additionally, SPIM gives the ability to

record from all cells in the same brain section without decreasing the temporal sam-

pling. Unlike two-photon microscopy, I used a visible blue laser (488nm) to probe the

calcium sensor, this blue light could modulate the decision making but this modulation

would be constant during the experiment and thus would not provide salient sensory

cues. SPIM is subject to a trade-off between temporal and spatial sampling. Brain-

wide imaging can only be obtained at low sampling frequency (0.5 Hz for a 200µm

vertical stack). In order to study the temporal dynamics of the neuronal activity prior

to spontaneous movement, I chose to record from a single coronal section of the brain

at 10Hz. The methods presented could be easily extended to a larger number of plane.
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Zebrafish larva

I used larva with genetically encoded calcium indicator GCaMP5G (Akerboom et al.,

2012) under the control of the pan-neuronal HuC promoter. This transgenic line

was developed by Jonathan Boulanger-Weill, a PhD student in the lab. Embryos

husbandry was similar to the VR experiments. All experiments were approved by Le

Comité d’Éthique pour l’Éxpérimentation Animal Charles Darwin (Ce5/2009/027).

Selective plane illumination microscopy

I built a custom SPIM which allows monitoring simultaneously neuronal activity at

cellular resolution across the brain (Figure 3.10). For this purpose, the larva were

placed dorsal-side up, head-fixed in agarose. Once solidified, the agarose around the

tail was removed, letting it free to move. Visual stimuli were projected on a screen

placed below the recording chamber, a small hole in the screen allowed imaging of the

locomotor activity of the larva.

Processing of the acquired fluorescence images

16-bits images were acquired with the Hamamatsu Orca Flash 4.0 sCMOS at a rate

of 10Hz. Typical image had 800x900 pixels and the 6h recording resulted in ∼ 300GB

size datasets per experiment. Routine operations such as storing and preprocessing

these large datasets were thus challenging. I developed a workflow that could easily

scale to process several experiments effortlessly (Figure 3.11). After each experiment,

the data were moved onto a storage server. To run the computationally intensive

preprocessing step in parallel, I used the High Throughput Computing (HTC) system

developed by Auguste Genovesio at the IBENS, based on 328 CPUs.

Image registration

The first step in the analysis of the calcium imaging data was to compensate for

possible drifts in the X-Y plane. For this purpose, I registered the images by finding

the maximum in the cross-correlation with a reference frame. The reference frame was

a 10 s average of the calcium imaging data computed in the middle of the recording.

The registered stacks were then manually inspected to evaluate the drift in the ventro-

dorsal plane, a drift that could not be compensated. Experiments with such drifts

were discarded. Movement artifacts were detected according to large deviations in the

maximum of the cross-correlation between successive frames. All frames with large

deviations were discarded, they mostly occurred during tail movements.



74 Internally driven behavior in zebrafish larvae

x

y

x

z

Periscope

Telescope 1

Single-mode 

fiber Clean-up

filter
Laser

x-y Galvo

Scan lens Tube lens

Emission

objective

Capillary & 

plunger 

Stage 

sCMOS Camera 

Trinocular tube lens 

Low pass filter 

Notch filter 

Detection objective

Band Pass Filter

Pico-projector

Telescope 2

 High speed 

Camera

IR LED

Hot Mirror

Fig. 3.10: Scheme of the optical paths of the SPIM. Up: top view, excitation
path. A light sheet in the x-y plane allowed monitoring neuronal activity in a coro-
nal section of the brain. Down: side view of the detection path. The tail movements
were recorded and visual stimuli could be displayed below the larva. The control
and data acquisition hardware are not shown. The components are listed in Supple-
mentary Methods.
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Fig. 3.11: Workflow for image preprocessing. The time series of significant fluo-
rescent events for each hexagonal region was extracted from the original image stack.
The first step was the registration of the images to compensate for potential slow
drifts. The fluorescence of each region of interest (ROI) was computed on the reg-
istered images. In each ROI, the baseline fluorescence was then fitted and the sig-
nificant increases in relative variation of fluorescence were computed. Parallelized
operations on the Condor HTC are encircled in red.

Image segmentation

Individual regions of interest (ROIs) were defined as hexagons of side lengths equal to

6.3µm, corresponding to an area roughly equal to a neuron’s soma. The advantage of

using hexagons was to maximize the area covered by the mapping while minimizing the

contact between neighboring ROIs. I did not dissociate neuropil and neuronal somata

in the analysis. To test whether individual ROIs contained relevant signals, in each

ROI, I computed the average correlation between the fluorescence of each pixel and

the average fluorescence of the ROI. Figure 3.12.B shows ROIs color-coded by this

correlation. If the latter was lower than 0.3, the ROI was removed from the analysis.

Inference of fluorescence events

In each ROI, the fluorescence time signal was extracted by evaluating the average in-

tensity across the pixels in each hexagon for each registered image. A smooth estimate

of the fluorescence baseline for each ROI was calculated by computing the 30s-long

causal running average of the 8th percentile of the raw data of the fluorescence sig-

nal (Figure 3.12.C). This estimate reflected slow fluctuations unrelated to the fast

calcium transients associated with the neuronal activity. The resulting smooth curve

baseline enabled computing the relative variation in fluorescence intensity ∆F
F

com-

puted as ∆F
F

= F (t)−baseline(t)
baseline(t)

. A ROI’s ∆F
F

typically presented a positively skewed

distribution, an example is showed in Figure 3.12.D. The latter peaked at a value µ,
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data points smaller than µ were unlikely to be related to neuronal firing. An estimate

of the standard deviation (s.d.) of the baseline could be obtained by considering that

the baseline is the result of a stochastic process. I thus fitted values of ∆F
F

smaller

than µ with a normal distribution of mean µ and s.d. σnoise. For further analysis,

I only considered fluorescence transients by imposing a threshold on each individual

times series. Values of ∆F
F

below 3σnoise were set to 0. A typical trace obtained is

shown in Figure 3.12.E. ROI with noise poorly fitted by a Gaussian (R2 < 0.9), or

with large-noise level σnoise > 0.014 were discarded.
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Fig. 3.12: Preprocessing of the fluorescence signal. (A) The fluorescence sig-
nal averaged across all ROIs during the 6h of recording (Blue). In red is a running
average of the fluorescent signal. The relative decrease in baseline fluorescence was
less than 6%. (B) Average pairwise correlation between pixels in each ROI, ROI
with a correlation below 0.3 were discarded. (C) In blue, the fluorescence signal of
a typical ROI. In red, baseline estimated from the ROI. (D) Probability density of
the relative fluorescence changes ∆F

F
of a typical ROI (blue) and the corresponding

Gaussian fit to its value of ∆F
F

smaller than µ (red). The s.d. of the Gaussian fit is
σnoise. (E) Example of a typical ROI ∆F

F
(blue) along time, with significant fluores-

cence transients. The signal above 3σnoise were highlighted in red.
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3.4 Results

In this part, I will discuss the approach and some results, however, it should be noted

that these results are still preliminary.

The neuronal basis of spontaneous movements was first characterized in humans

by a macroscopic increase in activity measured in premotor regions before the onset

of spontaneous movements (Shibasaki and Hallett, 2006). In order to test if a similar

macroscopic effect existed in zebrafish larva, I computed the average activity pooled

across ROIs before the onset of spontaneously generated movement. Figure 3.13.A
shows a gradual build-up in activity starting ∼ 1.5s before the onset of movements,

this time scale is similar to the readiness potential recorded in other species (see

Figure 1,5). However, this macroscopic quantification was not sufficient to predict

the onset of movements since spontaneous increase in the activity of a large portion

of the neurons occurred in the absence of movement.

I then performed a mass univariate Mann-Whitney test on all ROIs to find neurons

for which the median activity was significantly higher before the onset of a spontaneous

tail movement. For each 100ms frame before the onset of movements, I tested whether

the activity in each ROI was different from the inert regime. The inert regime was

defined as frames recorded at least 8s away from any movement. Figure 3.13.C shows

that the bilateral neuropil region 3 of the rhombencephalon displayed the strongest

difference in activity between the preparation of spontaneous movements and the inert

regime. The median activity in this region was statistically different from the inert

regime 200ms as well as 1s before the onset of movement. The neurons capable of

predicting the tail movements well in advance (1s before the movement’s onset) were

those showing the most significant increase just before the onset of movements (100ms,

Figure 3.13.B).
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Fig. 3.13: Increase in activity prior to spontaneous movement. (A) Average
activity pooled over ROIs before the onset of tail movements. (B) Raster plot of the
results of the Mann-Whitney test for each ROI, and for each frame before the onset
of the movements. White stripes (respectively black) indicate significant differences
(respectively non significant) with respect to the median activity of the inert regime.
The ROIs are ordered according to their significance 100 ms before the onset . The
most significant ROIs just before the onset of movement are also those that display
a significant difference the earliest before a movement onset. (C) Left, center : Map
of the decimal logarithm of the p-value for each ROI 1s and 200ms before the onset
of movements. Right : Location of the neuropil region 3 of the rhombencephalon.
This position matches the location of the most significant ROIs. In (A), (B) and
(C), only movements spaced by IBI larger than 8s were considered (N=199).
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In order to study the influence of neuronal activity on the selection of movement,

I performed a linear discrimination analysis (LDA) to find the projection of neuronal

activity that would discriminate between the different categories of movement defined

in 3.2.1. Unlike principal component analysis that seeks to find the subspace with

the maximal variance, LDA aims at finding a subspace that maximizes the separation

of the different categories. Traditional LDA is infeasible in our configuration because

of the high dimensionality of the data (∼ 3000 neurons) compared to the number of

samples in each movement class (∼ 80 movements per category). Therefore, I used

direct LDA (Xiao-Jun et al., 2004), a non-parametric variant of LDA aimed at finding

maximal discriminative directions in high-dimensional configurations.

Figure 3.14.A shows the projections of neuronal activity 100ms before the onset

of movement obtained by training a DLDA to discriminate the movement direction

(positive or negative index of tail deflection) in each directional category of movement:

asymmetrical scoot, routine turn and C bend. Rather than distinguishing the direc-

tion of asymmetrical movements independently of their category, the neuronal activity

in the studied coronal section of the brain presented a sharp directional discrimination

specific to routine turns. A section containing Mauthner cells might have performed

a better separability of the C bend movements. The map of significant weights associ-

ated with each ROI is shown in Figure 3.14.B. It presents a bilateral anti-symmetric

pattern in several brain regions: the migrated area of the pretectum (M1R and M1L),

the neuropil of the optic tectum, the posterior mesencephalon and the posterior hind-

brain. This pattern obtained using DLDA did not appear clearly when comparing the

average neuronal activity between the onset of routine turns. Our inability to distin-

guish between the average pattern of activity for positive and negative routine turns

was due to large variance independent of the direction of the turn that the DLDA

method successfully discards.



3.4 Results 81

Fig. 3.14: Predicting movement direction using DLDA, legend next page
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Fig. 3.14: (Previous page.) (A) The DLDA algorithm is applied separately on each
category of movement in order to discriminate their direction (positive or negative)
from the neuronal activity 100ms before the onset of movements. Each category of
movement is associated with an axis (black dashed line). On each axis, the horizon-
tal position of points represent the projection of the neuronal activity in 1D using
DLDA to discriminate direction of movement. A random vertical jitter was added
for visualization purposes. Blue dots (respectively red) represent movements with a
positive (respectively negative) direction in the index of deflection. (B) Upper panel:
the map of coefficients used in each ROI for the DLDA projection. Lower panel:
only coefficients of absolute value larger than 2 standard deviations are shown. A
bilateral antisymmetric pattern appears in several brain regions.
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I then manually selected clusters of ROIs in the regions showing a bilateral antisym-

metry in order to study independently the contribution of the different brain regions

highlighted by DLDA (red and blue clusters in Figure 3.15.A). Figure 3.15.B shows

typical time series associated with each cluster before the onset of spontaneous move-

ments. The scatter plot in Figure 3.15.C displays the activity in each cluster 100ms

before the onset of routine turn movements. The traces of the activity in the region

3 of the neuropil in the rhombocephalon displayed smaller fluctuations in the inert

regime, explaining the difference in the median activity between the inert regime and

just before the onset of a spontaneous tail movement (Figure 3.15.B). The bilateral

clusters were correlated and did not exhibit differences between both directions of

the routine turns (Figure 3.15.C). Activity in the bilateral clusters of the posterior

mesencephalon and rhombencephalon displayed a phase opposition reminiscent of the

hindbrain oscillators described by Ahrens et al. (2013b).

The phase of the oscillator before the onset of a routine turn was predictive of

its direction (Figure 3.15.C). The group in the pretectum did not display phase

opposition (Figure 3.15.B) but the relative level of activity in each group was also

predictive of the direction of the turn. In all groups, there was no clear threshold in

the activity prior to spontaneous movements.

A statistical test confirmed that the activity in the black clusters (correspond-

ing to the neuropil region 3 of the rhombencephalon) was specific to the onset of

the spontaneous movements but not to its direction. Alternatively, bilaterally anti-

symmetrical clusters in the rhombencephalon, mesencephalon and pretectum displayed

large fluctuations in the absence of movement but their activity before the onset of a

movement was predictive of its direction (respectively negative) when the activity of

the red(respectively blue) cluster was higher. The neuropil of the optic tectum were

neither significantly predicting the direction of movements nor their onset.
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Fig. 3.15: Specificity for the directionality of routine turns, legend next page
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Fig. 3.15: (Previous page.) (A) Manually labeled regions. Red and blue are the
groups corresponding to the bilaterally antisymmetric regions found in (Figure
3.14.B), the red and blue colors correspond to the sign of the group in the DLDA
map of coefficient (Figure 3.14.B). The black group corresponds to the region with
the most significant increase in activity before movements (Figure 3.13.C). (B) Each
of the three panels shows a 70s trace of the neuronal activity in the group indexed
in (A), the vertical bars indicate the onset of a movement. The link between groups
on the left indicate the bilaterally anti-symmetric structures. (C) Scatter plot for
each bilateral cluster of neurons. In the scatter plot, the neuronal activity before
a routine turn is represented by a dot, red (respectively blue) for positive routine
turn (respectively negative). The neuronal activity in the region 3 of the neuropil of
the rhombocephalon and in the optic tectum did not exhibit significant differences
between positive and negative directions. For the posterior rhombocephalon, poste-
rior mesencephalon and pretectum, if the red side was strongly active (respectively
blue) corresponding to the group 3,4 and 5 (respectively 10,9 and 8), the tail move-
ments were likely to be positive routine turns (respectively negative). (D) Each of
the four bar plots shows the decimal logarithm of the p-value for each group of neu-
rons (1-10), by testing the difference in the median neuronal activity across several
conditions, using a Mann-Whitney test. (i) Test if the median activity was different
before the onset of positive routine turns with respect to the inert regime. (ii) Test
if the median activity was different before the onset of negative routine turns with
respect to the inert regime. (iii) Test if the median of activity before the onset of
positive routine turns was larger than before negative routine turn. (iv) Test if the
median of activity before the onset of positive routine turns was smaller than before
negative routine turns.
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3.5 Supplementary Methods

Illumination path

The light-sheet was obtained by rapidly scanning a focused laser beam through the

caudo-rostral axis of the larva’s brain. The quality of the blue laser beam was im-

proved by adding a clean-up filter (BP 5 nm, 488nm) and a single-mode fiber. A

telescope was placed in the initial part of the path to enable adjustment of the beam’s

diameter. Then, the beam was projected onto a set of galvanometric mirrors driven

by a triangular waveform at 400 Hz over an angular range of 6◦. Oscillation of the

mirrors around the z-axis generated the scanning of the beam in the x-y plane for, the

other axis of rotation enabled controlling the vertical position of the light sheet. The

association of the scanning (f=75 mm) and tube lenses (180 mm) extended the beam

to a radius of 2.16 mm (1/e2) at the entrance of the illumination objective. The beam

intensity measured ar the entrance of the illumination objective was P=0.3 mW. The

low-NA illumination led to a 3.2 µm (1/e2) beam waist (Figure 3.16).
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Fig. 3.16: Axial profile of the light sheet. Each blue dot corresponded to a flu-
orescent beads of 0.1µm. Its full width at half maximum (FWHM) was computed
by scanning the light sheet in the vertical plane and measuring the vertical profile
of the fluorescence intensity. The red line corresponds to a fit matching a Gaussian
beam profile with w0 = 3.2µm. The optical sectioning is thus compatible with single-
cell resolution (the typical soma has a diameter of ∼ 7µm).
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Detection path

The detection path consisted of a water-dipping objective (16x, 0.8 NA, Nikon) mounted

on a piezo objective positioner. An olympus trinocular tube lens allowed imaging the

field of view. To record the neuronal activity, I used a sCMOS camera to record activ-

ity at 10 Hz with the external trigger mode and a binning of 2x2. A band-pass filter

(525-50, Semrock) and low-pass filter (FF01-680, Semrock) filtered the infrared and

laser light in order to image the green GcaMP5 fluorescence signal. The z-position of

the detection objective was matched to the z-location of the light-sheet using a piezo

in the detection arm. Taking into account the optical configuration and the binning

chosen, the pixel area was 0.9 µm. The binning of the camera was chosen to reduce

the size of the datasets.
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Optical Part

Table 3.1: Optical Part

Emission Path
Laser Phoxx 480-200, Omicron
Clean-up filter XX.F488, Omicron
Single-mode fiber Qioptiq, KineFlex

Telescope 1
LA1131-A-ML (f=50mm) +
LA1433-A-ML (f=150mm), Thorlabs

Periscope 1x RS99, 2x Protected Silver Mirrors, Thorlabs

X-Y Galvo
Mounted XY 5mm galvo sets,
Cambridge Technology

Scan lens AC508-075-A-ML (f=75mm), Thorlabs
Tube lens U-TLU (f=180mm), Olympus
Emission objective UPlanSAPO 4x/0.16, Olympus

Source
Stage Custom-made
Capillary & plunger 701904 glass capilaries & 701932 plunger, Brand

Reception Path
sCMOS Camera Orca Flash 4, Hamamatsu
Trinocular tube lens Olympus trinocular microscope
Low-pass filter FF01-680 SP25, Semrock
Band-pass filter 525-50, Semrock
Detection objective N16XLWD-PF, 16x/0.8, Nikon
Hot Mirror FM201, Thorlabs
Band-Pass Filter FF01 629/56, Sermrock
Pico-projector PK320, Optoma
Telescope 2 DZ1/L1.5-10, ImagingSource
High-Speed Camera Hxg20nir, Baumer
IR LED NG50L (810nm), BDlaser



Chapter 4

Conclusions and perspectives

4.1 A visual virtual reality system for the zebrafish

larva

In the first part of my thesis, I developed a method for studying the behavior of ze-

brafish larva within a visual virtual-reality (VR) system. While its head is immobile,

the virtual environment allowed larvae to perform goal-directed behaviors. To deter-

mine the speed and orientation of the swimming larva from the tail kinematics, I used

an autoregressive model fitted on a relatively small library of movements (∼ 300 tail

bouts). This model enabled me to associate tail movements of head-fixed larva with

a visual feedback similar to what the larva would have encounter in freely swimming

conditions.

Previous methods to record tail movements were developed to study specific be-

haviors such as unidirectional displacement triggered by a whole-field motion stimuli

aligned with the larva (Portugues and Engert, 2011). Another method was tuned to

provide a pre-determined feedback independent of the kinematics of the tail (Trivedi

and Bollmann, 2013), in this case, the visual feedback matched the intended move-

ment of the larva only occasionally. In contrast with these approaches, the proposed

method allows navigating in two dimensions using different movement repertoires.

An alternative preparation proposed by Ahrens et al. (2013a) relies on "fictive

swimming" where the trajectory of a paralyzed larva was extrapolated from extracel-

lular recordings of nerves in the spinal cord. The method is technically advantageous

because the paralyzer makes brain recordings more stable. Moreover, tail movements

produced by head-fixed larva in agarose can cause unwanted mechanical constraints

that are not present during free swim. On the other hand, by monitoring the real



90 Conclusions and perspectives

kinematics of the tail, my approach is compatible with fine characterization and clas-

sification of the motor behaviors, and provides, in addition to the visual feedback, the

proprioceptive feedback, absent in paralyzed larvae.

Using this method, I have reproduced goal-directed behaviors that are impossible

to observe in open-loop settings. In a virtual environment presenting a whole-field

motion, larvae were able to align and swim in the direction of motion using tail bouts of

long durations (∼ 300ms). Larva presenting an initial deviation of 55◦ with the whole

field motion were capable of aligning with a deviation of 20◦ after 3 tail bouts while

maintaining an average speed of 1.5mm/s in the direction of motion. The same method

allowed prey capture behavior in a different virtual environment. After detection of

the prey, larvae were capable of producing a fine tail movement that aligned them

with the moving prey. Then, using two other short duration bouts (∼ 180ms), larvae

were capable of reaching the prey target for 16% of their attempts and up to 40%

for the best larva. The behavior of the larva in the virtual environment reproduced

characteristics monitored in free-swimming conditions (e.g. reduction of orientation

change during successive bouts or the reduction of eye vergence as the larva approaches

the prey (Trivedi and Bollmann, 2013)).

Moreover, the control of the visual environment allowed studying how larvae adapt

to perturbations to the visual feedback. When the visual feedback was updated only

at the end of a tail bout rather than being continuously provided in real time, the du-

ration of bouts was longer (200ms instead of 180ms) and resulted in a 50% decrease of

the prey-capture success rate. This indicates that larvae can integrate visual informa-

tion in real time during a tail movement, in contrast to what was previously believed

(Trivedi and Bollmann, 2013). Moreover, these results demonstrate that discrete tail

bouts can be modulated during the short duration of a movement according to the

visual feedback. Neurons whose activity sustained locomotion such as V2a cells in the

hindbrain (Kimura et al., 2013) could contribute to the modulation of the duration of

movements according to visual feedbacks.

In the future, this method can be used to study the neural mechanisms underly-

ing fine goal-directed behaviors while large portions of the brain can be recorded in

intact animals at high temporal and spatial resolution navigating in VR (Wolf et al.,

2015). Since closed-loop systems generate unique trajectories for each trial, correlat-

ing behavior and the neuronal activity is a major challenge. A potential solution is
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the analysis at the single-trial level of behavior and neuronal activity (Bonnen et al.

(2015), Latimer et al. (2015)).

The flexibility of our method could be useful to understand how the same circuitry

can be employed to generate multiple behaviors (Wyart and Knafo, 2015). Such cir-

cuits can include for example the Nucleus of the Medial Fasciculus (nMLF), a cluster

of neurons involved in multiple flexible behaviors including the optomotor response

and prey capture (Huang et al., 2013). The complexity of the neuronal dynamics is

limited by the task complexity (Gao and Ganguli, 2015). Therefore, recording neu-

ronal activity in large portion of the brain is especially advantageous when observing

multiple behaviors.

Observation of motor actions in goal-driven navigation is limited by the level of

locomotor activity in head-fixed larvae. Prey-capture behaviors could be triggered in

only 14% of the trials similar to previous reports (Bianco and Engert (2015), Trivedi

and Bollmann (2013)).

The behavioral paradigm could be improve by using multi-sensory stimulation

(Candelier et al. (2015), Yokogawa et al. (2012)) or by combining the response of larvae

with appropriate learning paradigms (Roberts et al., 2013). A similar methodology

could also be applied in juvenile or adult fish in order to study more complex cognitive

processes such as social behaviors or place conditioning in virtual-reality conditions.

4.2 Internally driven behaviors in zebrafish larva

I studied how zebrafish larva spontaneously generates actions. Since actions were not

constrained by external stimuli, it was critical to perform a fine characterization of

behavior in order to disassemble the variability observed in this configuration.

Therefore, I first developed a method for classifying tail bouts, using dynamic

time warping for comparing tail movements, the repertoire of tail bouts recorded in

head-fixed larvae appeared to form a continuum rather than a series of discrete group

of movement types. Although previous studies have described discrete categories of

movements (Budick and O’Malley, 2000), there are two reasons why some continuity is

expected. The firing rate of reticulospinal neurons gradually influences the kinematic

parameters of tail movements, such as the amount of turn for MiV1 neurons (Huang

et al., 2013) or the tail-beat frequency for nMLF (Severi et al., 2014). Such populations

of neurons are thought to modulate continuously the trajectories (Orger et al., 2008)
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such as the gradation of trajectories observed in the virtual environment during prey

capture essays (Figure 2.5.D).

In order to obtain a parsimonious representation of this continuum of locomotor

actions, I trained a supervised classifier to identify 5 different categories of movements:

scoot, asymmetrical scoot, routine turn, C bend and burst. Tail bouts were correctly

classified with 82% chance while errors in the classification occurred mostly between

similar categories. Although previous studies have performed categorization of be-

havior in free-swimming conditions, our method does not rely on the analysis of the

generated trajectories and enabled me to analyze the behavior during functional imag-

ing and to produce a fine description of the relation between neuronal activity and

locomotion.

Using this movement classification tool, I studied the patterns of tail movements

in the absence of sensory stimulation. Rather than a uniform stochastic process, the

spontaneous behavior of head-restrained larvae was organized according to complex

temporal patterns. The distribution of inter-bouts intervals (IBI) presented two devia-

tions from a homogeneous Poissonian process: a heavy-tail regime with long periods of

inactivity and rhythmic successions between movements at short times (∼ 4s). Move-

ments chained in less than ∼ 10s were more likely to belong to similar categories and

to have a similar directionality.

A good candidate model for describing the spontaneous ethogram of an individual

larva was given by a semi-Markov model. A chain of events is a first order semi-Markov

process if:

P(Mvti+1, IBIi = t|Mvti, IBIi−1, Mvti−1, · · · ) = P(Mvti+1, IBIi = t|Mvti) (4.1)

Where Mvti represent the category of the movement i and IBIi is the resting time

preceding it. The duration of successive IBIs had a low correlation (0.04), thus, their

independence in (4.1) is a valid hypothesis. However, in its non-parametric form,

this model requires a large dataset of movements. Obtaining an ethogram averaged

across larvae, by pooling the IBIs and movements of different fish would neglect the

individual differences observed between larva.

The ultimate goal would be to fit the semi-Markov chain for individual larva. A

similar approach in fly enabled finding idiosyncrasy in the transition rates that per-

sisted over days and could identify uniquely individual fly (Kain et al., 2013). Using

this approach for the zebrafish larva would provide a very useful tool to characterize

the behavioral "personality" of individual larvae and study the neuronal mechanisms



4.3 Neural basis of internal decisions 93

underlying it.

It is unclear how similar the dynamics of spontaneous behaviors in head-fixed

larva is with respect to that of natural conditions. Despite the lower rate of locomotor

activity in head-restrained conditions, the burstiness of IBIs and the transition between

categories of movements could still be similar to those in free-swimming conditions.

Such findings would indicate that under head-restrained conditions, the larvae behave

normally but they are in a less alert state.

Observations of freely swimming zebrafish could help to identify the role of inter-

nally driven behaviors. A first hypothesis would be that internally driven behaviors

is required for sampling the environment efficiently during foraging (external motiva-

tion). Alternatively, spontaneously generated movements could help the larva to adapt

to their continuously changing morphology and the associated change in flow dynam-

ics (internal motivation). Moving only in response to imminent threat or attracting

stimuli might not be the best strategy. The feedback resulting from internally driven

behavior could help locomotor learning in the absence of imminent survival interests.

4.3 Neural basis of internal decisions

In order to understand the neuronal mechanisms underlying internal decisions, I

recorded the spontaneous neuronal activity over long periods of time and from a

large portion of the larva’s brain, while simultaneously monitoring spontaneous tail

movements.

On average, neurons displayed a build-up in activity ∼ 1s prior to the onset of

spontaneous movements. This timing is consistent with what has been recorded in

other species (Figure 1.5). In the recorded coronal section of the zebrafish’s brain, I

observed that the neuropil of the rhombencephalon presented a low baseline of activ-

ity but the latter increased before the onset of the spontaneous movement. Upstream

neurons responsible for this accumulation of activity in the neuropil were not identified

but they could exist in the non-monitored brain regions. Using dimensionality reduc-

tion algorithms, I could identify clusters of neurons predicting specifically the direction

of routine turns (left or right). In the absence of spontaneous movements, different

groups of neurons scattered within several brain regions presented spontaneous fluctu-

ations with a bilateral anti-symmetric pattern over long time scales (∼ 10s). However,

their activity prior to the onset of spontaneous movements was predictive of the di-

rection of the imminent routine turn. The IBI within which successive movements
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were similar (∼ 10s) roughly matched the typical duration of oscillations among the

neurons within the cluster. Therefore, the spontaneous oscillations of this population

could explain the similarity of successive movements.

These preliminary results validate the methodology by showing that highly infor-

mative neurons can be identified in the presence of large uninformative variance at

the level of the large neuronal population. Given the timing of motor preparation

in the order of seconds, brain-wide recordings at low-temporal sampling (typically a

complete 200 µm stack at 1 Hz) could accelerate the discovery of relevant anatomical

structures involved in internal decisions. A potential pitfall could be that larvae do

not move the tail spontaneously but as the result of the feedback of agarose resulting

from an attempt to move the eye. This artifact could be avoided by freeing the eyes

from agarose and monitoring their rotational kinematics. Finally, in the presence of

whole-field motion in the caudo-rostral direction, 11% of the movements generated

by the larva are routine turns (Figure 3.6). The cluster oscillations could account

for the direction of these routine turns and would therefore account for spontaneous

movements and for the variability observed in sensory evoked conditions.

It is possible that due to its relatively small number of neurons (∼ 105 vs ∼ 108

in mice and ∼ 109 in monkey), and their limited cognitive abilities, zebrafish is only

suited to study simple stimulus/response associations. However, zebrafish gives the

opportunity to simultaneously monitor large portions of the brain activity and the

whole repertoire of natural movements. This is in sharp contrast to other animal

models such as mice and monkeys where due to the constraints of the behavioral

paradigms a limited number of behaviors can be monitored. This allows studying the

rich interactions between the brain and its environment, namely, the role of action on

sensory perception in virtual reality and the role of the brain’s internal dynamics on

spontaneous behaviors.
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