72 research outputs found

    Galaxy And Mass Assembly (GAMA) : refining the local galaxy merger rate using morphological information

    Get PDF
    KRVS acknowledges the Science and Technology Facilities Council (STFC) for providing funding for this project, as well as the Government of Catalonia for a research travel grant (ref. 2010 BE-00268) to begin this project at the University of Nottingham. PN acknowledges the support of the Royal Society through the award of a University Research Fellowship and the European Research Council, through receipt of a Starting Grant (DEGAS-259586).We use the Galaxy And Mass Assembly (GAMA) survey to measure the local Universe mass-dependent merger fraction and merger rate using galaxy pairs and the CAS (concentration, asymmetry, and smoothness) structural method, which identifies highly asymmetric merger candidate galaxies. Our goals are to determine which types of mergers produce highly asymmetrical galaxies and to provide a new measurement of the local galaxy major merger rate. We examine galaxy pairs at stellar mass limits down to M* = 108 M⊙ with mass ratios of 4:1) the lower mass companion becomes highly asymmetric, whereas the larger galaxy is much less affected. The fraction of highly asymmetric paired galaxies which have a major merger companion is highest for the most massive galaxies and drops progressively with decreasing mass. We calculate that the mass-dependent major merger fraction is fairly constant at ∼1.3–2 per cent within 109.5 < M* < 1011.5 M⊙, and increases to ∼4 per cent at lower masses. When the observability time-scales are taken into consideration, the major merger rate is found to approximately triple over the mass range we consider. The total comoving volume major merger rate over the range 108.0 < M* < 1011.5 M⊙ is (1.2 ± 0.5) × 10−3 h370 Mpc−3 Gyr−1.Publisher PDFPeer reviewe

    A national registry study of patient and renal survival in adult nephrotic syndrome

    Get PDF
    Introduction: We aimed to determine the mortality rate, cause of death, and rate of end-stage kidney disease (ESKD) in adults with nephrotic syndrome (NS). Methods: We conducted a national registry–based study, including all 522 adults who had a kidney biopsy for NS in Scotland in 2014–2017. We linked the Scottish Renal Registry to death certificate data. We performed survival and Cox proportional hazards analyses, accounting for competing risks of death and ESKD. We compared mortality rates with those in the age- and sex-matched general population. Results: A total of 372 patients had primary NS; 150 had secondary NS. Over a median follow-up of 866 days, 110 patients (21%) died. In patients with primary NS, observed versus population 3-year mortality was 2.1% (95% CI 0.0%–4.6%) versus 0.9% (0.8%–1.0%) in patients aged &lt;60 years and 24.9% (18.4%–30.8%) versus 9.4% (8.3%–10.5%) in those aged ≥60 years. In secondary NS, this discrepancy was 17.1% (5.6%–27.2%) versus 1.1% (0.9%–1.2%) in &lt;60-year-olds and 49.4% (36.6%–59.7%) versus 8.1% (6.6%–9.6%) in ≥60-year-olds. In primary NS, cardiovascular causes accounted for 28% of deaths, compared with 18% in the general population. Eighty patients (15%) progressed to ESKD. Incidence of ESKD by 3 years was 8.4% (95% CI 4.9%–11.7%) in primary and 35.1% (24.3%–44.5%) in secondary NS. Early remission of proteinuria and the absence of early acute kidney injury (AKI) were associated with lower rates of death and ESKD. Conclusions: Adults with NS have high rates of death and ESKD. Cardiovascular causes account for excess mortality in primary NS

    ANCA-associated renal vasculitis is associated with rurality but not seasonality or deprivation in a complete national cohort study

    Get PDF
    Background Small studies suggest an association between ANCA-associated vasculitis (AAV) incidence and rurality, seasonality and socioeconomic deprivation. We examined the incidence of kidney biopsy-proven AAV and its relationship with these factors in the adult Scottish population.Methods Using the Scottish Renal Biopsy Registry, all adult native kidney biopsies performed between 2014 and 2018 with a diagnosis of granulomatosis with polyangiitis (GPA) or microscopic polyangiitis (MPA) were identified. The Scottish Government Urban Rural Classification was used for rurality analysis. Seasons were defined as autumn (September–November), winter (December–February), spring (March–May) and summer (June–August). Patients were separated into quintiles of socioeconomic deprivation using the validated Scottish Index of Multiple Deprivation and incidence standardised to age. Estimated glomerular filtration rate and urine protein:creatinine ratio at time of biopsy were used to assess disease severity.Results 339 cases of renal AAV were identified, of which 62% had MPA and 38% had GPA diagnosis. AAV incidence was 15.1 per million population per year (pmp/year). Mean age was 66 years and 54% were female. Incidence of GPA (but not MPA) was positively associated with rurality (5.2, 8.4 and 9.1 pmp/year in ‘urban’, ‘accessible remote’ and ‘rural remote’ areas, respectively; p=0.04). The age-standardised incidence ratio was similar across all quintiles of deprivation (p=ns).Conclusions Seasonality and disease severity did not vary across AAV study groups. In this complete national cohort study, we observed a positive association between kidney biopsy-proven GPA and rurality

    The impact of vaccination on incidence and outcomes of SARS-CoV-2 infection in patients with kidney failure in Scotland

    Get PDF
    Background: Patients with kidney failure requiring kidney replacement therapy (KRT) are at high risk of complications and death following SARS-CoV-2 infection with variable antibody responses to vaccination reported. We investigated the effects of COVID-19 vaccination on incidence of infection, hospitalization and death of COVID-19 infection. Methods: Study design was an observational data linkage cohort study. Multiple healthcare datasets were linked to ascertain all SARS-CoV-2 testing, vaccination, hospitalization, and mortality data for all patients treated with KRT in Scotland, from the start of the pandemic over a period of 20 months. Descriptive statistics, survival analyses, and vaccine effectiveness were calculated. Results: As of 19th September 2021, 93% (n=5281) of the established KRT population in Scotland had received two doses of an approved SARS-CoV-2 vaccine. Over the study period, there were 814 cases of SARS-CoV-2 infection (15.1% of the KRT population). Vaccine effectiveness against infection and hospitalization was 33% (95% CI 0-52) and 38% (95% CI 0-57) respectively. 9.2% of fully vaccinated individuals died within 28 days of a SARS-CoV-2 positive PCR test (7% dialysis patients and 10% kidney transplant recipients). This compares to &lt;0.1% of the vaccinated Scottish population being admitted to hospital or dying death due to COVID19 during that period. Conclusions: These data demonstrate a primary vaccine course of two doses has limited impact on COVID-19 infection and its complications in patients treated with KRT. Adjunctive strategies to reduce risk of both COVID-19 infection and its complications in this population are urgently required

    Galaxy and mass assembly (GAMA): refining the local galaxy merger rate using morphological information

    Get PDF
    We use the Galaxy And Mass Assembly (GAMA) survey to measure the local Universe mass dependent merger fraction and merger rate using galaxy pairs and the CAS structural method, which identifies highly asymmetric merger candidate galaxies. Our goals are to determine which types of mergers produce highly asymmetrical galaxies, and to provide a new measurement of the local galaxy major merger rate. We examine galaxy pairs at stellar mass limits down to M=108MM_{*} = 10^{8}M_{\odot} with mass ratios of 4:1) the lower mass companion becomes highly asymmetric, while the larger galaxy is much less affected. The fraction of highly asymmetric paired galaxies which have a major merger companion is highest for the most massive galaxies and drops progressively with decreasing mass. We calculate that the mass dependent major merger fraction is fairly constant at 1.32%\sim1.3-2\% between 109.5<M<1011.5M10^{9.5}<M_{*}<10^{11.5} M_{\odot}, and increases to 4%\sim4\% at lower masses. When the observability time scales are taken into consideration, the major merger rate is found to approximately triple over the mass range we consider. The total co-moving volume major merger rate over the range 108.0<M<1011.5M10^{8.0}<M_{*}<10^{11.5} M_{\odot} is (1.2±0.5)×103(1.2 \pm 0.5) \times 10^{-3} h703h^{3}_{70} Mpc3^{-3} Gyr1^{-1}

    Galaxy and Mass Assembly (GAMA): Variation in galaxy structure across the green valley

    Get PDF
    Using a sample of 472 local Universe (z \u3c 0.06) galaxies in the stellar mass range 10.25 \u3c logM*/M⊙ \u3c 10.75, we explore the variation in galaxy structure as a function of morphology and galaxy colour. Our sample of galaxies is subdivided into red, green, and blue colour groups and into elliptical and non-elliptical (disk-type) morphologies. Using Kilo- Degree Survey (KiDS) and Visible and Infrared Survey Telescope for Astronomy (VISTA) Kilo-Degree Infrared Galaxy Survey (VIKING) derived postage stamp images, a group of eight volunteers visually classified bars, rings, morphological lenses, tidal streams, shells, and signs of merger activity for all systems. We find a significant surplus of rings (2.3s) and lenses (2.9s) in disk-type galaxies as they transition across the green valley. Combined, this implies a joint ring/lens green valley surplus significance of 3.3s relative to equivalent disk-types within either the blue cloud or the red sequence. We recover a bar fraction of ~44 per cent which remains flat with colour, however, we find that the presence of a bar acts to modulate the incidence of rings and (to a lesser extent) lenses, with rings in barred disk-type galaxies more common by ~20-30 percentage points relative to their unbarred counterparts, regardless of colour. Additionally, green valley disk-type galaxies with a bar exhibit a significant 3.0s surplus of lenses relative to their blue/red analogues. The existence of such structures rules out violent transformative events as the primary end-of-life evolutionary mechanism, with a more passive scenario the favoured candidate for the majority of galaxies rapidly transitioning across the green valley

    Inhibition of TGF-β Signaling and Decreased Apoptosis in IUGR-Associated Lung Disease in Rats

    Get PDF
    Intrauterine growth restriction is associated with impaired lung function in adulthood. It is unknown whether such impairment of lung function is linked to the transforming growth factor (TGF)-β system in the lung. Therefore, we investigated the effects of IUGR on lung function, expression of extracellular matrix (ECM) components and TGF-β signaling in rats. IUGR was induced in rats by isocaloric protein restriction during gestation. Lung function was assessed with direct plethysmography at postnatal day (P) 70. Pulmonary activity of the TGF-β system was determined at P1 and P70. TGF-β signaling was blocked in vitro using adenovirus-delivered Smad7. At P70, respiratory airway compliance was significantly impaired after IUGR. These changes were accompanied by decreased expression of TGF-β1 at P1 and P70 and a consistently dampened phosphorylation of Smad2 and Smad3. Furthermore, the mRNA expression levels of inhibitors of TGF-β signaling (Smad7 and Smurf2) were reduced, and the expression of TGF-β-regulated ECM components (e.g. collagen I) was decreased in the lungs of IUGR animals at P1; whereas elastin and tenascin N expression was significantly upregulated. In vitro inhibition of TGF-β signaling in NIH/3T3, MLE 12 and endothelial cells by adenovirus-delivered Smad7 demonstrated a direct effect on the expression of ECM components. Taken together, these data demonstrate a significant impact of IUGR on lung development and function and suggest that attenuated TGF-β signaling may contribute to the pathological processes of IUGR-associated lung disease

    Evidence for 28 genetic disorders discovered by combining healthcare and research data

    Get PDF
    De novo mutations in protein-coding genes are a well-established cause of developmental disorders. However, genes known to be associated with developmental disorders account for only a minority of the observed excess of such de novo mutations. Here, to identify previously undescribed genes associated with developmental disorders, we integrate healthcare and research exome-sequence data from 31,058 parent–offspring trios of individuals with developmental disorders, and develop a simulation-based statistical test to identify gene-specific enrichment of de novo mutations. We identified 285 genes that were significantly associated with developmental disorders, including 28 that had not previously been robustly associated with developmental disorders. Although we detected more genes associated with developmental disorders, much of the excess of de novo mutations in protein-coding genes remains unaccounted for. Modelling suggests that more than 1,000 genes associated with developmental disorders have not yet been described, many of which are likely to be less penetrant than the currently known genes. Research access to clinical diagnostic datasets will be critical for completing the map of genes associated with developmental disorders

    Mosaic structural variation in children with developmental disorders

    Get PDF
    Delineating the genetic causes of developmental disorders is an area of active investigation. Mosaic structural abnormalities, defined as copy number or loss of heterozygosity events that are large and present in only a subset of cells, have been detected in 0.2–1.0% of children ascertained for clinical genetic testing. However, the frequency among healthy children in the community is not well characterized, which, if known, could inform better interpretation of the pathogenic burden of this mutational category in children with developmental disorders. In a case–control analysis, we compared the rate of large-scale mosaicism between 1303 children with developmental disorders and 5094 children lacking developmental disorders, using an analytical pipeline we developed, and identified a substantial enrichment in cases (odds ratio = 39.4, P-value 1.073e − 6). A meta-analysis that included frequency estimates among an additional 7000 children with congenital diseases yielded an even stronger statistical enrichment (P-value 1.784e − 11). In addition, to maximize the detection of low-clonality events in probands, we applied a trio-based mosaic detection algorithm, which detected two additional events in probands, including an individual with genome-wide suspected chimerism. In total, we detected 12 structural mosaic abnormalities among 1303 children (0.9%). Given the burden of mosaicism detected in cases, we suspected that many of the events detected in probands were pathogenic. Scrutiny of the genotypic–phenotypic relationship of each detected variant assessed that the majority of events are very likely pathogenic. This work quantifies the burden of structural mosaicism as a cause of developmental disorders
    corecore