175 research outputs found

    The context of chemical communication driving a mutualism

    Get PDF
    Recent work suggests that Drosophila and Saccharomyces yeasts may establish a mutualistic association, and that this is driven by chemical communication. While individual volatiles have been implicated in the attraction of D. melanogaster, the semiochemicals affecting the behavior of the sibling species D. simulans are less well characterised. Here, we comprehensively scrutinize a broad range of volatiles produced by attractive and repulsive yeasts to experimentally evaluate the chemical nature of communication between these species. When grown in liquid or on agar-solidified grape juice, attraction to S. cerevisiae was primarily driven by 3-methylbutyl acetate (isoamyl acetate) and repulsion by acetic acid, a known attractant to D. melanogaster (also known as vinegar fly). Using T-maze choice tests and synthetic compounds we show that these responses were strongly influenced by compound concentration. Moreover, the behavioral response is further impacted by the chemical context of the environment. Thus, chemical communication between yeasts and flies is complex, and is not simply driven by the presence of single volatiles, but modulated by compound interactions. The ecological context of chemical communication needs to be taken into consideration when testing for ecologically realistic responses

    Shared genetics underlying epidemiological association between endometriosis and ovarian cancer

    Get PDF
    Epidemiological studies have demonstrated associations between endometriosis and certain histotypes of ovarian cancer, including clear cell, low-grade serous and endometrioid carcinomas. We aimed to determine whether the observed associations might be due to shared genetic aetiology. To address this, we used two endometriosis datasets genotyped on common arrays with full-genome coverage (3194 cases and 7060 controls) and a large ovarian cancer dataset genotyped on the customized Illumina Infinium iSelect (iCOGS) arrays (10 065 cases and 21 663 controls). Previous work has suggested that a large number of genetic variants contribute to endometriosis and ovarian cancer (all histotypes combined) susceptibility. Here, using the iCOGS data, we confirmed polygenic architecture for most histotypes of ovarian cancer. This led us to evaluate if the polygenic effects are shared across diseases. We found evidence for shared genetic risks between endometriosis and all histotypes of ovarian cancer, except for the intestinal mucinous type. Clear cell carcinoma showed the strongest genetic correlation with endometriosis (0.51, 95% CI = 0.18-0.84). Endometrioid and low-grade serous carcinomas had similar correlation coefficients (0.48, 95% CI = 0.07-0.89 and 0.40, 95% CI = 0.05-0.75, respectively). High-grade serous carcinoma, which often arises from the fallopian tubes, showed a weaker genetic correlation with endometriosis (0.25, 95% CI = 0.11-0.39), despite the absence of a known epidemiological association. These results suggest that the epidemiological association between endometriosis and ovarian adenocarcinoma may be attributable to shared genetic susceptibility loci.Other Research Uni

    Assessing the genetic architecture of epithelial ovarian cancer histological subtypes.

    Get PDF
    Epithelial ovarian cancer (EOC) is one of the deadliest common cancers. The five most common types of disease are high-grade and low-grade serous, endometrioid, mucinous and clear cell carcinoma. Each of these subtypes present distinct molecular pathogeneses and sensitivities to treatments. Recent studies show that certain genetic variants confer susceptibility to all subtypes while other variants are subtype-specific. Here, we perform an extensive analysis of the genetic architecture of EOC subtypes. To this end, we used data of 10,014 invasive EOC patients and 21,233 controls from the Ovarian Cancer Association Consortium genotyped in the iCOGS array (211,155 SNPs). We estimate the array heritability (attributable to variants tagged on arrays) of each subtype and their genetic correlations. We also look for genetic overlaps with factors such as obesity, smoking behaviors, diabetes, age at menarche and height. We estimated the array heritabilities of high-grade serous disease ([Formula: see text] = 8.8 ± 1.1 %), endometrioid ([Formula: see text] = 3.2 ± 1.6 %), clear cell ([Formula: see text] = 6.7 ± 3.3 %) and all EOC ([Formula: see text] = 5.6 ± 0.6 %). Known associated loci contributed approximately 40 % of the total array heritability for each subtype. The contribution of each chromosome to the total heritability was not proportional to chromosome size. Through bivariate and cross-trait LD score regression, we found evidence of shared genetic backgrounds between the three high-grade subtypes: serous, endometrioid and undifferentiated. Finally, we found significant genetic correlations of all EOC with diabetes and obesity using a polygenic prediction approach.The Ovarian Cancer Association Consortium is supported by a grant from the Ovarian Cancer Research Fund thanks to donations by the family and friends of Kathryn Sladek Smith (PPD/RPCI.07). The Nurses’ Health Studies would like to thank the participants and staff of the Nurses' Health Study and Nurses' Health Study II for their valuable contributions as well as the following state cancer registries for their help: AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD, MA, MI, NE, NH, NJ, NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, WY. The authors assume full responsibility for analyses and interpretation of these data. Funding of the constituent studies was provided by the California Cancer Research Program (00-01389V-20170, N01-CN25403, 2II0200); the Canadian Institutes of Health Research (MOP-86727); Cancer Australia; Cancer Council Victoria; Cancer Council Queensland; Cancer Council New South Wales; Cancer Council South Australia; Cancer Council Tasmania; Cancer Foundation of Western Australia; the Cancer Institute of New Jersey; Cancer Research UK (C490/A6187, C490/A10119, C490/A10124); the Danish Cancer Society (94-222-52); the ELAN Program of the University of Erlangen-Nuremberg; the Eve Appeal; the Helsinki University Central Hospital Research Fund; Helse Vest; the Norwegian Cancer Society; the Norwegian Research Council; the Ovarian Cancer Research Fund; Nationaal Kankerplan of Belgium; the L & S Milken Foundation; the Polish Ministry of Science and Higher Education (4 PO5C 028 14, 2 PO5A 068 27); the Roswell Park Cancer Institute Alliance Foundation; the US National Cancer Institute (K07-CA095666, K07-CA80668, K07-CA143047, K22-CA138563, N01-CN55424, N01-PC67001, N01-PC067010, N01-PC035137, P01-CA017054, P01-CA087696, P30-CA072720, P30-CA15083, P30-CA008748, P50-CA159981, P50-CA105009, P50-CA136393, R01-CA149429, R01-CA014089, R01-CA016056, R01-CA017054, R01-CA049449, R01-CA050385, R01-CA054419, R01-CA058598, R01-CA058860, R01-CA061107, R01-CA061132, R01-CA063678, R01-CA063682, R01-CA067262, R01-CA071766, R01-CA074850, R01-CA080978, R01-CA083918, R01-CA087538, R01-CA092044, R01-CA095023, R01-CA122443, R01-CA112523, R01-CA114343, R01-CA126841, R01-CA136924, R03-CA113148, R03-CA115195, U01-CA069417, U01-CA071966, UM1-CA186107, UM1-CA176726 and Intramural research funds); the NIH/National Center for Research Resources/General Clinical Research Center (MO1-RR000056); the US Army Medical Research and Material Command (DAMD17-01-1-0729, DAMD17-02-1-0666, DAMD17-02-1-0669, W81XWH-07-0449, W81XWH-10-1-02802); the US Public Health Service (PSA-042205); the National Health and Medical Research Council of Australia (199600 and 400281); the German Federal Ministry of Education and Research of Germany Programme of Clinical Biomedical Research (01GB 9401); the State of Baden-Wurttemberg through Medical Faculty of the University of Ulm (P.685); the German Cancer Research Center; the Minnesota Ovarian Cancer Alliance; the Mayo Foundation; the Fred C. and Katherine B. Andersen Foundation; the Lon V. Smith Foundation (LVS-39420); the Oak Foundation; Eve Appeal; the OHSU Foundation; the Mermaid I project; the Rudolf-Bartling Foundation; the UK National Institute for Health Research Biomedical Research Centres at the University of Cambridge, Imperial College London, University College Hospital ‘Womens Health Theme’ and the Royal Marsden Hospital; and WorkSafeBC 14. Investigator-specific funding: G.C.P receives scholarship support from the University of Queensland and QIMR Berghofer. Y.L. was supported by the NHMRC Early Career Fellowship. G.C.T. is supported by the National Health and Medical Research Council. S.M. was supported by an ARC Future Fellowship

    Association of breast cancer risk in BRCA1 and BRCA2 mutation carriers with genetic variants showing differential allelic expression:Identification of a modifier of breast cancer risk at locus 11q22.3

    Get PDF
    Cis-acting regulatory SNPs resulting in differential allelic expression (DAE) may, in part, explain the underlying phenotypic variation associated with many complex diseases. To investigate whether common variants associated with DAE were involved in breast cancer susceptibility among BRCA1 and BRCA2 mutation carriers, a list of 175 genes was developed based of their involvement in cancer-related pathways.Using data from a genome-wide map of SNPs associated with allelic expression, we assessed the association of similar to 320 SNPs located in the vicinity of these genes with breast and ovarian cancer risks in 15,252 BRCA1 and 8211 BRCA2 mutation carriers ascertained from 54 studies participating in the Consortium of Investigators of Modifiers of BRCA1/2.We identified a region on 11q22.3 that is significantly associated with breast cancer risk in BRCA1 mutation carriers (most significant SNP rs228595 p = 7 x 10(-6)). This association was absent in BRCA2 carriers (p = 0.57). The 11q22.3 region notably encompasses genes such as ACAT1, NPAT, and ATM. Expression quantitative trait loci associations were observed in both normal breast and tumors across this region, namely for ACAT1, ATM, and other genes. In silico analysis revealed some overlap between top risk-associated SNPs and relevant biological features in mammary cell data, which suggests potential functional significance.We identified 11q22.3 as a new modifier locus in BRCA1 carriers. Replication in larger studies using estrogen receptor (ER)-negative or triple-negative (i.e., ER-, progesterone receptor-, and HER2-negative) cases could therefore be helpful to confirm the association of this locus with breast cancer risk.</p

    Common variants at theCHEK2gene locus and risk of epithelial ovarian cancer

    Get PDF
    Genome-wide association studies have identified 20 genomic regions associated with risk of epithelial ovarian cancer (EOC), but many additional risk variants may exist. Here, we evaluated associations between common genetic variants [single nucleotide polymorphisms (SNPs) and indels] in DNA repair genes and EOC risk. We genotyped 2896 common variants at 143 gene loci in DNA samples from 15 397 patients with invasive EOC and controls. We found evidence of associations with EOC risk for variants at FANCA, EXO1, E2F4, E2F2, CREB5 and CHEK2 genes (P ≀ 0.001). The strongest risk association was for CHEK2 SNP rs17507066 with serous EOC (P = 4.74 x 10(-7)). Additional genotyping and imputation of genotypes from the 1000 genomes project identified a slightly more significant association for CHEK2 SNP rs6005807 (r (2) with rs17507066 = 0.84, odds ratio (OR) 1.17, 95% CI 1.11-1.24, P = 1.1×10(-7)). We identified 293 variants in the region with likelihood ratios of less than 1:100 for representing the causal variant. Functional annotation identified 25 candidate SNPs that alter transcription factor binding sites within regulatory elements active in EOC precursor tissues. In The Cancer Genome Atlas dataset, CHEK2 gene expression was significantly higher in primary EOCs compared to normal fallopian tube tissues (P = 3.72×10(-8)). We also identified an association between genotypes of the candidate causal SNP rs12166475 (r (2) = 0.99 with rs6005807) and CHEK2 expression (P = 2.70×10(-8)). These data suggest that common variants at 22q12.1 are associated with risk of serous EOC and CHEK2 as a plausible target susceptibility gene.Other Research Uni

    rs495139 in the TYMS-ENOSF1 Region and Risk of Ovarian Carcinoma of Mucinous Histology.

    Get PDF
    Thymidylate synthase (TYMS) is a crucial enzyme for DNA synthesis. TYMS expression is regulated by its antisense mRNA, ENOSF1. Disrupted regulation may promote uncontrolled DNA synthesis and tumor growth. We sought to replicate our previously reported association between rs495139 in the TYMS-ENOSF1 3' gene region and increased risk of mucinous ovarian carcinoma (MOC) in an independent sample. Genotypes from 24,351 controls to 15,000 women with invasive OC, including 665 MOC, were available. We estimated per-allele odds ratios (OR) and 95% confidence intervals (CI) using unconditional logistic regression, and meta-analysis when combining these data with our previous report. The association between rs495139 and MOC was not significant in the independent sample (OR = 1.09; 95% CI = 0.97⁻1.22; p = 0.15; N = 665 cases). Meta-analysis suggested a weak association (OR = 1.13; 95% CI = 1.03⁻1.24; p = 0.01; N = 1019 cases). No significant association with risk of other OC histologic types was observed (p = 0.05 for tumor heterogeneity). In expression quantitative trait locus (eQTL) analysis, the rs495139 allele was positively associated with ENOSF1 mRNA expression in normal tissues of the gastrointestinal system, particularly esophageal mucosa (r = 0.51, p = 1.7 × 10-28), and nonsignificantly in five MOC tumors. The association results, along with inconclusive tumor eQTL findings, suggest that a true effect of rs495139 might be small

    Assessment of variation in immunosuppressive pathway genes reveals TGFBR2 to be associated with risk of clear cell ovarian cancer.

    Get PDF
    BACKGROUND: Regulatory T (Treg) cells, a subset of CD4+ T lymphocytes, are mediators of immunosuppression in cancer, and, thus, variants in genes encoding Treg cell immune molecules could be associated with ovarian cancer. METHODS: In a population of 15,596 epithelial ovarian cancer (EOC) cases and 23,236 controls, we measured genetic associations of 1,351 SNPs in Treg cell pathway genes with odds of ovarian cancer and tested pathway and gene-level associations, overall and by histotype, for the 25 genes, using the admixture likelihood (AML) method. The most significant single SNP associations were tested for correlation with expression levels in 44 ovarian cancer patients. RESULTS: The most significant global associations for all genes in the pathway were seen in endometrioid ( p = 0.082) and clear cell ( p = 0.083), with the most significant gene level association seen with TGFBR2 ( p = 0.001) and clear cell EOC. Gene associations with histotypes at p < 0.05 included: IL12 ( p = 0.005 and p = 0.008, serous and high-grade serous, respectively), IL8RA ( p = 0.035, endometrioid and mucinous), LGALS1 ( p = 0.03, mucinous), STAT5B ( p = 0.022, clear cell), TGFBR1 ( p = 0.021 endometrioid) and TGFBR2 ( p = 0.017 and p = 0.025, endometrioid and mucinous, respectively). CONCLUSIONS: Common inherited gene variation in Treg cell pathways shows some evidence of germline genetic contribution to odds of EOC that varies by histologic subtype and may be associated with mRNA expression of immune-complex receptor in EOC patients

    Assessment of variation in immunosuppressive pathway genes reveals TGFBR2 to be associated with risk of clear cell ovarian cancer

    Get PDF
    BACKGROUND: Regulatory T (Treg) cells, a subset of CD4+ T lymphocytes, are mediators of immunosuppression in cancer, and, thus, variants in genes encoding Treg cell immune molecules could be associated with ovarian cancer. METHODS: In a population of 15,596 epithelial ovarian cancer (EOC) cases and 23,236 controls, we measured genetic associations of 1,351 SNPs in Treg cell pathway genes with odds of ovarian cancer and tested pathway and gene-level associations, overall and by histotype, for the 25 genes, using the admixture likelihood (AML) method. The most significant single SNP associations were tested for correlation with expression levels in 44 ovarian cancer patients. RESULTS: The most significant global associations for all genes in the pathway were seen in endometrioid (p = 0.082) and clear cell (p = 0.083), with the most significant gene level association seen with TGFBR2 (p = 0.001) and clear cell EOC. Gene associations with histotypes at p < 0.05 included: IL12 (p = 0.005 and p = 0.008, serous and high-grade serous, respectively), IL8RA (p = 0.035, endometrioid and mucinous), LGALS1 (p = 0.03, mucinous), STAT5B (p = 0.022, clear cell), TGFBR1 (p = 0.021 endometrioid) and TGFBR2 (p = 0.017 and p = 0.025, endometrioid and mucinous, respectively). CONCLUSIONS: Common inherited gene variation in Treg cell pathways shows some evidence of germline genetic contribution to odds of EOC that varies by histologic subtype and may be associated with mRNA expression of immune-complex receptor in EOC patients

    Associations of common breast cancer susceptibility alleles with risk of breast cancer subtypes in BRCA1 and BRCA2 mutation carriers

    Get PDF
    Introduction: More than 70 common alleles are known to be involved in breast cancer (BC) susceptibility, and several exhibit significant heterogeneity in their associations with different BC subtypes. Although there are differences in the association patterns between BRCA1 and BRCA2 mutation carriers and the general population for several loci, no study has comprehensively evaluated the associations of all known BC susceptibility alleles with risk of BC subtypes in BRCA1 and BRCA2 carriers. Methods: We used data from 15,252 BRCA1 and 8,211 BRCA2 carriers to analyze the associations between approximately 200,000 genetic variants on the iCOGS array and risk of BC subtypes defined by estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) and triple-negative- (TN) status; morphologic subtypes; histological grade; and nodal involvement. Results: The estimated BC hazard ratios (HRs) for the 74 known BC alleles in BRCA1 carriers exhibited moderate correlations with the corresponding odds ratios from the general population. However, their associations with ER-positive BC in BRCA1 carriers were more consistent with the ER-positive as
    • 

    corecore