2,162 research outputs found

    Alfven Wave Reflection and Turbulent Heating in the Solar Wind from 1 Solar Radius to 1 AU: an Analytical Treatment

    Full text link
    We study the propagation, reflection, and turbulent dissipation of Alfven waves in coronal holes and the solar wind. We start with the Heinemann-Olbert equations, which describe non-compressive magnetohydrodynamic fluctuations in an inhomogeneous medium with a background flow parallel to the background magnetic field. Following the approach of Dmitruk et al, we model the nonlinear terms in these equations using a simple phenomenology for the cascade and dissipation of wave energy, and assume that there is much more energy in waves propagating away from the Sun than waves propagating towards the Sun. We then solve the equations analytically for waves with periods of hours and longer to obtain expressions for the wave amplitudes and turbulent heating rate as a function of heliocentric distance. We also develop a second approximate model that includes waves with periods of roughly one minute to one hour, which undergo less reflection than the longer-period waves, and compare our models to observations. Our models generalize the phenomenological model of Dmitruk et al by accounting for the solar wind velocity, so that the turbulent heating rate can be evaluated from the coronal base out past the Alfven critical point - that is, throughout the region in which most of the heating and acceleration occurs. The simple analytical expressions that we obtain can be used to incorporate Alfven-wave reflection and turbulent heating into fluid models of the solar wind.Comment: 9 pages, 9 figures, accepted for publication in Ap

    Transmission of Mycobacterium tuberculosis in a Rural Community, Arkansas, 1945–2000

    Get PDF
    A cluster of tuberculosis cases in a rural community in Arkansas persisted from 1991 to 1999. The cluster had 13 members, 11 linked epidemiologically. Old records identified 24 additional patients for 40 linked case-patients during a 54-year period. Residents of this neighborhood represent a population at high risk who should be considered for tuberculin testing and treatment for latent tuberculosis infection

    Structural and chemical characterization of the back contact region in high efficiency CdTe solar cells

    Get PDF
    Cadmium telluride (CdTe) is the leading commercialized thin-film photovoltaic technology. Copper is commonly used in back contacts to obtain high efficiency, but has also been implicated as a harmful factor for device stability. T hus it is critical to understand its composition and distribution within complete devices. In this work the composition and structure of the back contact region was examined in high efficiency devices (-16%) contacted using a ZnTe:Cu buffer layer followed by gold metallization. T he microstructure was examined in the asdeposited state and after rapid thermal processing (RTP) using high resolution transmission electron microscopy and EDX chemical mapping. After RTP the ZnTe exhibits a bilayer structure with polycrystalline, twinned grains adjacent to Au and an amorphous region adjacent to CdTe characterized by extensive Cd-Zn interdiffusion. T he copper that is co-deposited uniformly within ZnTe is found to segregate dramatically after RTP activation, either collecting near the ZnTe/Au interface or forming CUxTe clusters in CdTe at defects or grain boundaries near the interface with ZnTe. Chlorine, present throughout CdTe and concentrated at grain boundaries, does not penetrate significantly into the back contact region during RTP activation

    Generality of shear thickening in suspensions

    Full text link
    Suspensions are of wide interest and form the basis for many smart fluids. For most suspensions, the viscosity decreases with increasing shear rate, i.e. they shear thin. Few are reported to do the opposite, i.e. shear thicken, despite the longstanding expectation that shear thickening is a generic type of suspension behavior. Here we resolve this apparent contradiction. We demonstrate that shear thickening can be masked by a yield stress and can be recovered when the yield stress is decreased below a threshold. We show the generality of this argument and quantify the threshold in rheology experiments where we control yield stresses arising from a variety of sources, such as attractions from particle surface interactions, induced dipoles from applied electric and magnetic fields, as well as confinement of hard particles at high packing fractions. These findings open up possibilities for the design of smart suspensions that combine shear thickening with electro- or magnetorheological response.Comment: 11 pages, 9 figures, accepted for publication in Nature Material

    Transit Timing Observations from Kepler: VII. Confirmation of 27 planets in 13 multiplanet systems via Transit Timing Variations and orbital stability

    Full text link
    We confirm 27 planets in 13 planetary systems by showing the existence of statistically significant anti-correlated transit timing variations (TTVs), which demonstrates that the planet candidates are in the same system, and long-term dynamical stability, which places limits on the masses of the candidates---showing that they are planetary. %This overall method of planet confirmation was first applied to \kepler systems 23 through 32. All of these newly confirmed planetary systems have orbital periods that place them near first-order mean motion resonances (MMRs), including 6 systems near the 2:1 MMR, 5 near 3:2, and one each near 4:3, 5:4, and 6:5. In addition, several unconfirmed planet candidates exist in some systems (that cannot be confirmed with this method at this time). A few of these candidates would also be near first order MMRs with either the confirmed planets or with other candidates. One system of particular interest, Kepler-56 (KOI-1241), is a pair of planets orbiting a 12th magnitude, giant star with radius over three times that of the Sun and effective temperature of 4900 K---among the largest stars known to host a transiting exoplanetary system.Comment: 12 pages, 13 figures, 5 tables. Submitted to MNRA

    Spitzer Quasar and ULIRG Evolution Study (QUEST). IV. Comparison of 1-Jy Ultraluminous Infrared Galaxies with Palomar-Green Quasars

    Get PDF
    We report the results from a comprehensive study of 74 ultraluminous infrared galaxies (ULIRGs) and 34 Palomar-Green (PG) quasars within z ~ 0.3$ observed with the Spitzer Infrared Spectrograph (IRS). The contribution of nuclear activity to the bolometric luminosity in these systems is quantified using six independent methods that span a range in wavelength and give consistent results within ~ +/-10-15% on average. The average derived AGN contribution in ULIRGs is ~35-40%, ranging from ~15-35% among "cool" (f_25/f_60 =< 0.2) optically classified HII-like and LINER ULIRGs to ~50 and ~75% among warm Seyfert 2 and Seyfert 1 ULIRGs, respectively. This number exceeds ~80% in PG QSOs. ULIRGs fall in one of three distinct AGN classes: (1) objects with small extinctions and large PAH equivalent widths are highly starburst-dominated; (2) systems with large extinctions and modest PAH equivalent widths have larger AGN contributions, but still tend to be starburst-dominated; and (3) ULIRGs with both small extinctions and small PAH equivalent widths host AGN that are at least as powerful as the starbursts. The AGN contributions in class 2 ULIRGs are more uncertain than in the other objects, and we cannot formally rule out the possibility that these objects represent a physically distinct type of ULIRGs. A morphological trend is seen along the sequence (1)-(2)-(3), in general agreement with the standard ULIRG - QSO evolution scenario and suggestive of a broad peak in extinction during the intermediate stages of merger evolution. However, the scatter in this sequence, implies that black hole accretion, in addition to depending on the merger phase, also has a strong chaotic/random component, as in local AGN. (abridged)Comment: 61 pages, 39 figures, 16 tables, accepted for publication in ApJS, June 2009 issue. Unabbreviated version can be found at http://www.astro.umd.edu/~veilleux/pubs/quest4.pd

    NRES: the network of robotic Echelle spectrographs

    Get PDF
    Las Cumbres Observatory Global Network (LCOGT) is building the Network of Robotic Echelle Spectrographs (NRES), which will consist of six identical, optical (390 - 860 nm) high-precision spectrographs, each fiber-fed simultaneously by up to two 1-meter telescopes and a thorium argon calibration source. We plan to install one at up to 6 observatory sites in the Northern and Southern hemispheres, creating a single, globally-distributed, autonomous spectrograph facility using up to twelve 1-meter telescopes. Simulations suggest we will achieve long-term radial velocity precision of 3 m/s in less than an hour for stars brighter than V = 12. We have been funded with NSF MRI and ATI grants, and expect our first spectrograph to be deployed in fall 2016, with the full network operation of 5 or 6 units beginning in 2017. We will briefly overview the NRES design, goals, robotic operation, and status. In addition, we will discuss early results from our prototype spectrograph, the laboratory and on-sky performance of our first production unit, and the ongoing software development effort to bring this resource online
    • …
    corecore