1,155 research outputs found

    Supervisión del Transporte Mediante Sistema de Comunicación CANbus.

    Get PDF
    El presente articulo pretende fijar y determinar de modo preciso las características que debe tener y los requerimientos que debe cumplir una ECU que supervise el transporte de frutas y hortalizas en contenedores de transporte internacional

    Review. Monitoring the intermodal, refrigerated transport of fruit using sensor networks

    Get PDF
    Most of the fruit in Europe is transported by road, but the saturation of the major arteries, the increased demand for freight transport, and environmental concerns all indicate there is a need to change this means of transport. A combination of transport modes using universal containers is one of the solutions proposed: this is known as intermodal transport. Tracking the transport of fruit in reefer containers along the supply chain is the means by which product quality can be guaranteed. The integration of emerging information technologies can now provide real-time status updates. This paper reviews the literature and the latest technologies in this area as part of a national project. Particular emphasis is placed on multiplexed digital communication technologies and wireless sensor networks

    Analysis of repoductive seasonality in Entrepelado and Retinto Iberian pig varieties under intensive management

    Full text link
    [EN] Seasonal patterns in the farrowing distribution of two Iberian pig varieties (Retinto and Entrepelado) and its environmental and genetic sources of variation were analyzed within the context of a von Mises circular mixed model solved through Bayesian inference. Estimates about the dispersion parameter supported a low seasonal pattern for both Entrepelado and Retinto varieties with the farrowing peak located between March and April. Nevertheless, seasonality was corroborated by the deviance information criterion when comparing against a uniform circular model by the deviance information criterion (DIC); the uniform model increased more than 100 DIC units in both Iberian pig varieties. Regarding systematic effects, only the parity number of the sow had a relevant impact on farrowing distribution, advancing the farrowing peak in gilts and old sows. Genetic variability was only suggested in the Retinto population although with a small estimate, which would indicate little chance to modify farrowing distribution by genetic selection in the Iberian pig.Research supported by projects CGL2016-80155-R and IDI20170304, and a fellowship granted to M. Martin de Hijas-Villalba (BES-2017-080596) by Spain's Ministerio de Economia y Competitividad.Martin De Hijas-Villalba, M.; Varona, L.; Ibáñez-Escriche, N.; Pablo Rosas, J.; Luis Noguera, J.; Casellas, J. (2021). Analysis of repoductive seasonality in Entrepelado and Retinto Iberian pig varieties under intensive management. Livestock Science. 245:1-4. https://doi.org/10.1016/j.livsci.2021.1044411424

    Desarrollo de Sistemas para la Supervisión Multi Distribuida de la Carga en Transportes Frigoríficos Intermodales.

    Get PDF
    El transporte de mercancías se realiza sobre producto paletizado existiendo distintos tipos de bases paletizables: Europalet P8 (1000 X 800), palet PÍO (1200X 1000 mm), CHEP (Commonwealth Handling Equipment Pool 1160 X 1160 mm) y el palet australiano o AUF (1100 X 1100 mm); la Tabla 1resume la capacidad de los distintos contenedores empleados en varios medios de transporte: marítimo(buques porta contenedores), terrestre, ferroviario

    Análisis térmico de un contenedor de transporte internacional

    Get PDF
    En este trabajo, hemos realizado diversos ensayos con el objetivo de caracterizar un contenedor de transporte internacional reefer 20'. Los experimentos han consistido en realizar mediciones de la variación de temperatura en el interior del contenedor, utilizando el equipo de frío en los modos de funcionamiento en continuo y discontinuo. Además, hemos caracterizado nuestro contenedor con el equipo de refrigeración desconectado. Para ello se ha instalado una malla de sondas de temperatura Pt100 en las paredes y techo del contenedor

    Maternal Transmission Ratio Distortion in two Iberian pig varieties

    Get PDF
    [EN] Transmission ratio distortion (TRD) is defined as the allele transmission deviation from the heterozygous parent to the offspring from the expected Mendelian genotypic frequencies. Although TRD can be a confounding factor in genetic mapping studies, this phenomenon remains mostly unknown in pigs, particularly in traditional breeds (i.e., the Iberian pig). We aimed to describe the maternal TRD prevalence and its genomic distribution in two Iberian varieties. Genotypes from a total of 247 families (dam and offspring) of Entrepelado (n = 129) and Retinto (n = 118) Iberian varieties were analyzed. The offspring were sired by both ungenotyped purebred Retinto and Entrepelado Iberian boars, regardless of the dam variety used. After quality control, 16,246 single-nucleotide polymorphisms (SNPs) in the Entrepelado variety and 9744 SNPs in the Retinto variety were analyzed. Maternal TRD was evaluated by a likelihood ratio test under SNP-by-SNP, adapting a previous model solved by Bayesian inference. Results provided 68 maternal TRD loci (TRDLs) in the Entrepelado variety and 24 in the Retinto variety (q < 0.05), with mostly negative TRD values, increasing the transmission of the minor allele. In addition, both varieties shared ten common TRDLs. No strong evidence of biological effects was found in genes with TRDLs. However, some biological processes could be affected by TRDLs, such as embryogenesis at different levels and lipid metabolism. These findings could provide useful insight into the genetic mechanisms to improve the swine industry, particularly in traditional breeds.The Spanish Government funded this research, grants number CGL2016-80155-R, and IDI-20170304Vazquez-Gomez, M.; Martín De Hijas-Villalba, M.; Varona, L.; Ibáñez-Escriche, N.; Rosas, JP.; Negro, S.; Noguera, JL.... (2020). Maternal Transmission Ratio Distortion in two Iberian pig varieties. Genes. 11(9):1-18. https://doi.org/10.3390/genes11091050S118119Lyttle, T. W. (1991). SEGREGATION DISTORTERS. Annual Review of Genetics, 25(1), 511-581. doi:10.1146/annurev.ge.25.120191.002455Silver, L. M. (1993). The peculiar journey of a selfish chromosome: mouse t haplotypes and meiotic drive. Trends in Genetics, 9(7), 250-254. doi:10.1016/0168-9525(93)90090-5Paz-Miguel, J. E., Pardo-Manuel de Villena, F., Sánchez-Velasco, P., & Leyva-Cobián, F. (2001). H2-haplotype-dependent unequal transmission of the 17 16 translocation chromosome from Ts65Dn females. Mammalian Genome, 12(1), 83-85. doi:10.1007/s003350010225Meyer, W. K., Arbeithuber, B., Ober, C., Ebner, T., Tiemann-Boege, I., Hudson, R. R., & Przeworski, M. (2012). Evaluating the Evidence for Transmission Distortion in Human Pedigrees. Genetics, 191(1), 215-232. doi:10.1534/genetics.112.139576Liu, Y., Zhang, L., Xu, S., Hu, L., Hurst, L. D., & Kong, X. (2013). Identification of Two Maternal Transmission Ratio Distortion Loci in Pedigrees of the Framingham Heart Study. Scientific Reports, 3(1). doi:10.1038/srep02147Wu, G., Hao, L., Han, Z., Gao, S., Latham, K. E., de Villena, F. P.-M., & Sapienza, C. (2005). Maternal Transmission Ratio Distortion at the Mouse Om Locus Results From Meiotic Drive at the Second Meiotic Division. Genetics, 170(1), 327-334. doi:10.1534/genetics.104.039479Solignac, M., Vautrin, D., Baudry, E., Mougel, F., Loiseau, A., & Cornuet, J.-M. (2004). A Microsatellite-Based Linkage Map of the Honeybee, Apis mellifera L. Genetics, 167(1), 253-262. doi:10.1534/genetics.167.1.253Vongs, A., Kakutani, T., Martienssen, R. A., & Richards, E. J. (1993). Arabidopsis thaliana DNA Methylation Mutants. Science, 260(5116), 1926-1928. doi:10.1126/science.8316832Koide, Y., Onishi, K., Nishimoto, D., Baruah, A. R., Kanazawa, A., & Sano, Y. (2008). Sex‐independent transmission ratio distortion system responsible for reproductive barriers between Asian and African rice species. New Phytologist, 179(3), 888-900. doi:10.1111/j.1469-8137.2008.02490.xWAKASUGI, N. (1974). A GENETICALLY DETERMINED INCOMPATIBILITY SYSTEM BETWEEN SPERMATOZOA AND EGGS LEADING TO EMBRYONIC DEATH IN MICE. Reproduction, 41(1), 85-96. doi:10.1530/jrf.0.0410085Agulnik, S. I., Agulnik, A. I., & Ruvinsky, A. O. (1990). Meiotic drive in female mice heterozygous for the HSR inserts on chromosome 1. Genetical Research, 55(2), 97-100. doi:10.1017/s0016672300025325Dyer, K. A., Charlesworth, B., & Jaenike, J. (2007). Chromosome-wide linkage disequilibrium as a consequence of meiotic drive. Proceedings of the National Academy of Sciences, 104(5), 1587-1592. doi:10.1073/pnas.0605578104Fishman, L., & McIntosh, M. (2019). Standard Deviations: The Biological Bases of Transmission Ratio Distortion. Annual Review of Genetics, 53(1), 347-372. doi:10.1146/annurev-genet-112618-043905Huang, L. O., Labbe, A., & Infante-Rivard, C. (2012). Transmission ratio distortion: review of concept and implications for genetic association studies. Human Genetics, 132(3), 245-263. doi:10.1007/s00439-012-1257-0Lorieux, M., Goffinet, B., Perrier, X., de León, D. G., & Lanaud, C. (1995). Maximum-likelihood models for mapping genetic markers showing segregation distortion. 1. Backcross populations. Theoretical and Applied Genetics, 90(1), 73-80. doi:10.1007/bf00220998Philipsen, M., & Kristensen, B. (2009). Preliminary evidence of segregation distortion in the SLA system. Animal Blood Groups and Biochemical Genetics, 16(2), 125-133. doi:10.1111/j.1365-2052.1985.tb01460.xJeon, J.-T., Carlborg, Ö., Törnsten, A., Giuffra, E., Amarger, V., Chardon, P., … Andersson, L. (1999). A paternally expressed QTL affecting skeletal and cardiac muscle mass in pigs maps to the IGF2 locus. Nature Genetics, 21(2), 157-158. doi:10.1038/5938Pinton, A., Calgaro, A., Bonnet, N., Ferchaud, S., Billoux, S., Dudez, A. M., … Ducos, A. (2009). Influence of sex on the meiotic segregation of a t(13;17) Robertsonian translocation: a case study in the pig. Human Reproduction, 24(8), 2034-2043. doi:10.1093/humrep/dep118Casellas, J., Manunza, A., Mercader, A., Quintanilla, R., & Amills, M. (2014). A Flexible Bayesian Model for Testing for Transmission Ratio Distortion. Genetics, 198(4), 1357-1367. doi:10.1534/genetics.114.169607Casellas, J., Gularte, R. J., Farber, C. R., Varona, L., Mehrabian, M., Schadt, E. E., … Medrano, J. F. (2012). Genome Scans for Transmission Ratio Distortion Regions in Mice. Genetics, 191(1), 247-259. doi:10.1534/genetics.111.135988Shendure, J., Melo, J. A., Pociask, K., Derr, R., & Silver, L. M. (1998). Sex-restricted non-Mendelian inheritance of mouse Chromosome 11 in the offspring of crosses between C57BL/6J and (C57BL/6J × DBA/2J)F 1 mice. Mammalian Genome, 9(10), 812-815. doi:10.1007/s003359900872Huang, L. O., Infante-Rivard, C., & Labbe, A. (2016). Analysis of Case-Parent Trios Using a Loglinear Model with Adjustment for Transmission Ratio Distortion. Frontiers in Genetics, 7. doi:10.3389/fgene.2016.00155Lopez-Bote, C. (1998). Sustained Utilization of the Iberian Pig Breed. Meat Science, 49, S17-S27. doi:10.1016/s0309-1740(98)00072-2Ibáñez-Escriche, N., Varona, L., Magallón, E., & Noguera, J. L. (2014). Crossbreeding effects on pig growth and carcass traits from two Iberian strains. Animal, 8(10), 1569-1576. doi:10.1017/s1751731114001712Esteve-Codina, A., Kofler, R., Himmelbauer, H., Ferretti, L., Vivancos, A. P., Groenen, M. A. M., … Pérez-Enciso, M. (2011). Partial short-read sequencing of a highly inbred Iberian pig and genomics inference thereof. Heredity, 107(3), 256-264. doi:10.1038/hdy.2011.13Vázquez-Gómez, M., García-Contreras, C., Astiz, S., Torres-Rovira, L., Fernández-Moya, E., Olivares, Á., … Isabel, B. (2020). Piglet birthweight and sex affect growth performance and fatty acid composition in fatty pigs. Animal Production Science, 60(4), 573. doi:10.1071/an18254Laval, G., Iannuccelli, N., Legault, C., Milan, D., Groenen, M. A., Giuffra, E., … Ollivier, L. (2000). Genetic diversity of eleven European pig breeds. Genetics Selection Evolution, 32(2), 187. doi:10.1186/1297-9686-32-2-187Fabuel, E., Barragán, C., Silió, L., Rodríguez, M. C., & Toro, M. A. (2004). Analysis of genetic diversity and conservation priorities in Iberian pigs based on microsatellite markers. Heredity, 93(1), 104-113. doi:10.1038/sj.hdy.6800488Alonso, I., Ibáñez-Escriche, N., Noguera, J. L., Casellas, J., Martín de Hijas-Villalba, M., Gracia-Santana, M. J., & Varona, L. (2020). Genomic differentiation among varieties of Iberian pig. Spanish Journal of Agricultural Research, 18(1), e0401. doi:10.5424/sjar/2020181-15411Ibáñez-Escriche, N., Magallón, E., Gonzalez, E., Tejeda, J. F., & Noguera, J. L. (2016). Genetic parameters and crossbreeding effects of fat deposition and fatty acid profiles in Iberian pig lines1. Journal of Animal Science, 94(1), 28-37. doi:10.2527/jas.2015-9433Pena, R. N., Noguera, J. L., García-Santana, M. J., González, E., Tejeda, J. F., Ros-Freixedes, R., & Ibáñez-Escriche, N. (2019). Five genomic regions have a major impact on fat composition in Iberian pigs. Scientific Reports, 9(1). doi:10.1038/s41598-019-38622-7Noguera, J. L., Ibáñez-Escriche, N., Casellas, J., Rosas, J. P., & Varona, L. (2019). Genetic parameters and direct, maternal and heterosis effects on litter size in a diallel cross among three commercial varieties of Iberian pig. Animal, 13(12), 2765-2772. doi:10.1017/s1751731119001125Casellas, J., Ibáñez-Escriche, N., Varona, L., Rosas, J. P., & Noguera, J. L. (2019). Inbreeding depression load for litter size in Entrepelado and Retinto Iberian pig varieties1. Journal of Animal Science, 97(5), 1979-1986. doi:10.1093/jas/skz084Weinberg, C. R., Wilcox, A. J., & Lie, R. T. (1998). A Log-Linear Approach to Case-Parent–Triad Data: Assessing Effects of Disease Genes That Act Either Directly or through Maternal Effects and That May Be Subject to Parental Imprinting. The American Journal of Human Genetics, 62(4), 969-978. doi:10.1086/301802Benjamini, Y., & Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society: Series B (Methodological), 57(1), 289-300. doi:10.1111/j.2517-6161.1995.tb02031.xHaider, S., Ballester, B., Smedley, D., Zhang, J., Rice, P., & Kasprzyk, A. (2009). BioMart Central Portal—unified access to biological data. Nucleic Acids Research, 37(suppl_2), W23-W27. doi:10.1093/nar/gkp265Mi, H., Huang, X., Muruganujan, A., Tang, H., Mills, C., Kang, D., & Thomas, P. D. (2016). PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Research, 45(D1), D183-D189. doi:10.1093/nar/gkw1138McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore, MD) https://omim.org/Sydney School of Veterinary Science https://omia.org/Kristensen, T. N., & Sørensen, A. C. (2005). Inbreeding – lessons from animal breeding, evolutionary biology and conservation genetics. Animal Science, 80(2), 121-133. doi:10.1079/asc41960121Bosse, M., Megens, H.-J., Madsen, O., Paudel, Y., Frantz, L. A. F., Schook, L. B., … Groenen, M. A. M. (2012). Regions of Homozygosity in the Porcine Genome: Consequence of Demography and the Recombination Landscape. PLoS Genetics, 8(11), e1003100. doi:10.1371/journal.pgen.1003100Silió, L., Rodríguez, M. C., Fernández, A., Barragán, C., Benítez, R., Óvilo, C., & Fernández, A. I. (2013). Measuring inbreeding and inbreeding depression on pig growth from pedigree or SNP-derived metrics. Journal of Animal Breeding and Genetics, 130(5), 349-360. doi:10.1111/jbg.12031Eaves, I. A., Bennett, S. T., Forster, P., Ferber, K. M., Ehrmann, D., Wilson, A. J., … Todd, J. A. (1999). Transmission ratio distortion at the INS-IGF2 VNTR. Nature Genetics, 22(4), 324-325. doi:10.1038/11890De Villena, F., & Sapienza, C. (2001). Transmission ratio distortion in offspring of heterozygous female carriers of Robertsonian translocations. Human Genetics, 108(1), 31-36. doi:10.1007/s004390000437Saura, M., Fernández, A., Varona, L., Fernández, A. I., de Cara, M., Barragán, C., & Villanueva, B. (2015). Detecting inbreeding depression for reproductive traits in Iberian pigs using genome-wide data. Genetics Selection Evolution, 47(1), 1. doi:10.1186/s12711-014-0081-5Hunt, S. E., McLaren, W., Gil, L., Thormann, A., Schuilenburg, H., Sheppard, D., … Cunningham, F. (2018). Ensembl variation resources. Database, 2018. doi:10.1093/database/bay119Kido, T., Sikora-Wohlfeld, W., Kawashima, M., Kikuchi, S., Kamatani, N., Patwardhan, A., … Butte, A. J. (2018). Are minor alleles more likely to be risk alleles? BMC Medical Genomics, 11(1). doi:10.1186/s12920-018-0322-5Balick, D. J., Do, R., Cassa, C. A., Reich, D., & Sunyaev, S. R. (2015). Dominance of Deleterious Alleles Controls the Response to a Population Bottleneck. PLOS Genetics, 11(8), e1005436. doi:10.1371/journal.pgen.1005436Plough, L. V., & Hedgecock, D. (2011). Quantitative Trait Locus Analysis of Stage-Specific Inbreeding Depression in the Pacific Oyster Crassostrea gigas. Genetics, 189(4), 1473-1486. doi:10.1534/genetics.111.131854Xu, S. (2008). Quantitative Trait Locus Mapping Can Benefit From Segregation Distortion. Genetics, 180(4), 2201-2208. doi:10.1534/genetics.108.090688Id-Lahoucine, S., Cánovas, A., Jaton, C., Miglior, F., Fonseca, P. A. S., Sargolzaei, M., … Casellas, J. (2019). Implementation of Bayesian methods to identify SNP and haplotype regions with transmission ratio distortion across the whole genome: TRDscan v.1.0. Journal of Dairy Science, 102(4), 3175-3188. doi:10.3168/jds.2018-15296Schulz, R., Underkoffler, L. A., Collins, J. N., & Oakey, R. J. (2006). Nondisjunction and transmission ratio distortion ofChromosome 2 in a (2.8) Robertsonian translocation mouse strain. Mammalian Genome, 17(3), 239-247. doi:10.1007/s00335-005-0126-8Eversley, C. D., Clark, T., Xie, Y., Steigerwalt, J., Bell, T. A., de Villena, F. P., & Threadgill, D. W. (2010). Genetic mapping and developmental timing of transmission ratio distortion in a mouse interspecific backcross. BMC Genetics, 11(1). doi:10.1186/1471-2156-11-98Rugg-Gunn, P. J., Cox, B. J., Ralston, A., & Rossant, J. (2010). Distinct histone modifications in stem cell lines and tissue lineages from the early mouse embryo. Proceedings of the National Academy of Sciences, 107(24), 10783-10790. doi:10.1073/pnas.0914507107Canovas, S., & Ross, P. J. (2016). Epigenetics in preimplantation mammalian development. Theriogenology, 86(1), 69-79. doi:10.1016/j.theriogenology.2016.04.020Jambhekar, A., Dhall, A., & Shi, Y. (2019). Roles and regulation of histone methylation in animal development. Nature Reviews Molecular Cell Biology, 20(10), 625-641. doi:10.1038/s41580-019-0151-1Gonzalez-Bulnes, A., Astiz, S., Ovilo, C., Lopez-Bote, C. J., Torres-Rovira, L., Barbero, A., … Vazquez-Gomez, M. (2016). Developmental Origins of Health and Disease in swine: implications for animal production and biomedical research. Theriogenology, 86(1), 110-119. doi:10.1016/j.theriogenology.2016.03.024Ishibashi, Y., Kohyama-Koganeya, A., & Hirabayashi, Y. (2013). New insights on glucosylated lipids: Metabolism and functions. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1831(9), 1475-1485. doi:10.1016/j.bbalip.2013.06.00

    Effect of an active video game intervention combined with multicomponent exercise for cardiorespiratory fitness in children with overweight and obesity: randomized controlled trial

    Get PDF
    Background: Childhood overweight and obesity have become major global health problems and are negatively related with the cardiorespiratory fitness (CRF) level in school children and adolescents. Exercise, specifically multicomponent training, is effective for CRF improvement, but the main challenge is to ensure adherence to exercise in children with overweight and obesity. Therefore, new ways of exercising that are more attractive and motivational for this population are needed and playing or training with active video games (AVGs) has been proposed as an effective alternative because they require full-body movement and therefore increase energy expenditure. Objective: The main aim of this study was to investigate the effects of an AVG intervention combined with multicomponent training on CRF at maximal and submaximal intensities in children with overweight or obesity. Methods: We recruited 28 children (13 girls and 15 boys) aged 9 to 11 years with overweight or obesity from medical centers and divided them into 2 groups, an intervention group (n=20) that participated in a 5-month supervised AVG exercise program combined with multicomponent exercise, and a control group (n=8) that continued daily activities without modification. A maximal stress test to measure CRF using a walking-graded protocol with respiratory gas exchange was performed by the participants. Results: The AVG group showed a significant decrease in heart rate and oxygen uptake for the same intensities in the submaximal stages of the maximal treadmill test, as well as a lower oxygen uptake percentage according to the individual maximal oxygen uptake, whereas the control group did not show overall changes. No change in the peak oxygen uptake (VO2peak) was found. Conclusions: A 5-month AVG intervention combined with multicomponent exercise had positive effects on CRF at submaximal intensity, showing a lower heart rate and oxygen uptake at the same intensities and displaying a lower oxygen uptake percentage according to the individual (VO2peak). Greater benefits were found in children with the highest fat percentage.Trial Registration: ClinicalTrials.gov NCT04418713; https://clinicaltrials.gov/show/NCT0441871

    Genomic differentiation among varieties of Iberian pig

    Get PDF
    [EN] Aim of study: The objective of this study was to identify the autosomal genomic regions associated with genetic differentiation between three commercial strains of Iberian pig. Area of study: Extremadura (Spain). Material and methods: We used the Porcine v2 BeadChip to genotype 349 individuals from three varieties of Iberian pig (EE, Entrepelado; RR, Retinto; and TT, Torbiscal) and their crosses. After standard filtering of the Single Nucleotide Polymorphism (SNP) markers, 47, 67, and 123 haplotypic phases from EE, RR, and TT origins were identified. The allelic frequencies of 31,180 SNP markers were used to calculate the fixation index (FST) that were averaged in sliding windows of 2Mb. Main results: The results confirmed the greater genetic closeness of the EE and RR varieties, and we were able to identify several genomic regions with a divergence greater than expected. The genes present in those genomic regions were used to perform an Overrepresentation Enrichment Analysis (ORA) for the Gene Ontology (GO) terms for biological process. The ORA indicated that several groups of biological processes were overrepresented: a large group involving morphogenesis and development, and others associated with neurogenesis, cellular responses, or metabolic processes. These results were reinforced by the presence of some genes within the genomic regions that had the highest genomic differentiation. Research highlights: The genomic differentiation among varieties of the Iberian pig is heterogeneous along the genome. The genomic regions with the highest differentiation contain an overrepresentation of genes related with morphogenesis and development, neurogenesis, cellular responses and metabolic processes.Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Spain RTA2012-00054-C02-01 Ministry of Science, Innovation and Universities, Spain CGL2016-80155-R; IDI-20170304 (CDTI)Alonso, I.; Ibáñez-Escriche, N.; Noguera, JL.; Casellas, J.; Martin De Hijas-Villalba, M.; Gracia-Santana, MJ.; Varona, L. (2020). Genomic differentiation among varieties of Iberian pig. Spanish Journal of Agricultural Research (Online). 18(1):1-20. https://doi.org/10.5424/sjar/2020181-15411120181Alexander DH, Novembre J, Lange K, 2009. Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19: 1655-1664.Audetat KA, Galbraith MD, Odell AT, Lee T, Pandey A, Espinosa JM, Dowell RD, Taatjes D J, 2017. A kinase-independent role for cyclin-dependent kinase 19 in p53 response. Mol Cell Biol 37: e00626-16.Cepica S, Ovilo, C, Masopust M, Knoll A, Fernández A, López A, Rohrer GA, Nonneman D, 2012. Four genes located on a SSC2 meat quality QTL region are associated with different meat quality traits in Landrace x Chinese-European crossbred population. Anim Genet 43: 333-336.Conaway RC, Conaway JW, 2009. The INO80 chromatin remodeling complex in transcription, replication and repair. Trends Biochem Sci 34: 71-77.Correa RG, Krajewska M, Ware CF, Gerlic M, Reed JC, 2014. The NLR-related protein NWD1 is associated with prostate cancer and modulates androgen receptor signaling. Oncotarget 30: 1666-1682.Fabuel EC, Barragán C, Silio L, Rodríguez MC, Toro MA, 2004. Analysis of genetic diversity and conservation priorities in Iberian pigs based on microsatellite markers. Heredity 93: 104-113.Fontanesi L, Schiavo G, Galimberti G, Bovo S, Russo V, Gallo M, Buttazzoni L, 2017. A genome-wide association study for a proxy of intermuscular fat level in the Italian Large White breed identifies genomic regions affecting an important quality parameter for dry-cured hams. Anim Genet 48: 459-465.Hérault Y, Hraba-Renevey S, van der Hoeven F, Duboule D, 1997. Function of the Evx-2 gene in the morphogenesis of vertebrate limbs. EMBO J 15: 6727-6738.Herrero-Medrano JM, Megens HJ, Groenen MAM, Ramis G, Bosse M, Pérez-Enciso M, Crooijmans RPMA, 2013. Conservation genomic analysis of domestic and wild pig populations from the Iberian Peninsula. BMC Genet 14: 106.Izu Y, Sun M, Zwolanek D, Veit G, Williams V, Cha B, Jepsen KJ, Koch M, Birk DE, 2011. Type XII collagen regulates osteoblast polarity and communication during bone formation. J Cell Biol 193: 1115-1130.Jeyabal PVS, Rubio V, Chen H, Zhang J, Shi ZZ, 2014. Regulation of cell-matrix adhesion by OLA1, the Obg-like ATPase 1. Biochem Biophys Res Commun 444: 568-574.Kawakami Y, Rodríguez-Esteban C, Matsui T, Rodríguez-León J, Kato S, Izpisúa-Belmonte JC, 2004. Sp8 and Sp9, two closely related buttonhead-like transcription factors, regulate Fgf8 expression and limb outgrowth in vertebrate embryos. Development 131: 4763-4774.Laval G, Iannucelli N, Legault C, Milan D, Groenen MAM, Giuffra E, Andersson L, Nissen PH, Jorgensen CB, Beeckmann P et al., 2000. Genetic diversity of eleven European pig breeds. Genet Sel Evol 32: 187-203.Lim HH, Michael GJ, Smith P, Lim L, Hall C, 1992. Developmental regulation and neuronal expression of the mRNA of rat n-chimaerin, a p21rac GAP:cDNA sequence. Biochem J 287: 415-422.Marchand M, Schroeder IS, Markossian S, Skoudy A, Nègre D, Cosset FL, Real P, Kaiser C, Wobus AM, Savarier P, 2009. Mouse ES cells over-expressing the transcription factor NeuroD1 show increased differentiation towards endocrine lineages and insulin-expressing cells. Int J Dev Biol 53: 569-578.Martínez AM, Delgado JV, Rodero A, Vega-Pla JL, 2000. Genetic structure of the Iberian pig breed using microsatellites. Anim Genet 31: 295-301.Myers P, 2008. Hox genes in development: the HOX code. Nature Education 1: 2.Onteru SK, Fan B, Nikkilä MT, Garrick DJ, Stalder KJ, Rothschild MF, 2011. Whole-genome association analyses for lifetime reproductive traits in pig. J Anim Sci 89: 988-995.Onteru SK, Fan B, Du ZQ, Garrick DJ. Stalder KJ, Rothschild MF, 2012. A whole-genome association study for pig reproductive traits. Anim Genet 43: 18-26.Pallares LF, Carbonetto P, Gopalakrishnan S, Parker CC, Ackert-Bicknell CL, Palmer AA, Tautz D, 2015. Mapping of craniofacial traits in outbred mice identifies major developmental genes involved in shape determination. Plos Genet 11: e1005607.Ponsuksili S, Zebunke M, Murani E, Trakooljul N, Krieter J, Puppe B, Schwerin M, Wimmers K, 2015. Integrated genome-wide association and hypothalamus eQTL studies indicate a link between the circadian rhythm-related gene PER1 and coping behavior. Sci Rep 5: 16264.Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ, Sham PC, 2007. PLINK: a tool set for whole-genome association and population-based linkage analysis. Am J Human Genet 81: 559-575.Qanbari S, Simianer H, 2014. Mapping signatures of positive selection in the genome of livestock. Livest Sci 166: 133-143.R Core Team, 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https: //www. R-project.org/.Rohrer GA, Nonneman DJ, Wiedmann RT, Schneider JF, 2015. A study of vertebra number in pigs confirms the association of vertnin and reveals additional QTL. BMC Genet 16: 129.Sargolzaei M, Chesnais JP, Schenkel FS, 2014. A new approach for efficient genotype imputation using information from relatives. BMC Genom 15: 478.Schneider JF, Miles JR, Brown-Brandl TM, Nienaber JA, Rohrer GA, Vallet JL, 2015. Genomewide association analysis for average birth interval and stillbirth in swine. J Anim Sci 93: 529-540.Sherwood NM, Krueckl SL, McRory JE, 2000. The origin and function of the pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagon superfamily. Endocr Rev 21: 619-670.Silió L, Barragan C, Fernández AI, García-Casco J, Rodríguez MC, 2016. Assessing effective population size, coancestry and inbreeding effects on litter size using the pedigree and SNP data in closed lines of the Iberian pig breed. J Anim Breed Genet 133: 145-154.Smedley D, Haider S, Durinck S, Pandini L, Provero P, Allen J, Arnaiz O, Awedh MH, Baldock R, Barbiera G, et al., 2015. The BioMart community portal: an innovative alternative to large, centralized data repositories. Nucl Acids Res 43: W589-W598.Soilleux EJ, Morris LS, Leslie G, Chehimi J, Luo Q, Levroney E, Trowsdale J, Montaner LJ, Doms RW, Weissman D, Coleman N, Lee B., 2002. Constitutive and induced expression of DC-SIGN on dendritic cell and macrophage subpopulations in situ and in vitro. J Leukoc Biol 71: 445-457.Sterky FH, Trotter JH, Lee S, Recktenwald CV, Du X, Zhou B, Zhou P, Schwenk J, Fakler B, Südhof TC, 2017. Carbonic anhydrase-related protein CA10 is an evolutionary conserved pan-neurexin ligand. Proc Nac Acad Sci 114: E1253-E1262.Vale-Cruz DS, Ma Q, Syme J, LuValle PA, 2008. Activating transcription factor-2 affects skeletal growth by modulating pRb gene expression. Mech Dev 125: 843-856.Velardo LL, Silva FF, Lopes MS, Madsen O, Bastiaansen JW, Knol EF, Kelly M, Varona L, Lopes PS, Guimaräes SEF. 2016. Revealing new candidate genes for reproductive traits in pigs: combining Bayesian GWAS and functional pathways. Genet Sel Evol 48: 9.Ventanas S, Ventanas J, Ruiz J, Estévez M, 2005. Iberian pigs for the development of high-quality cured products. In: Recent Res Devel Agricultural & Food Chem; SG Pandalai (Ed.) 6: 27-53.Wang J, Vasaikar S, Shi Z, Greer M, Zhang B, 2017. WebGestalt 2017: a more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit. Nucl Acids Res 45: W130-W137.Weir WS, Cockerham CC, 1984. Estimating F-Statistics for the analysis of population structure. Evolution 38: 1358-1370.Wright S, 1951. The genetical structure of populations. Ann Eugenics 15: 323-354.Wu B, Gong J, Yuan S, Zhang Y, Wei T, 2013. Patterns of evolutionary selection pressure in the immune signaling protein TRAF3IP2 in mammals. Gene 531: 403-410.Yagi T, Shigetani Y, Furuta Y, Nada S, Okado N, Ikawa Y, Aizawa S, 1994. Fyn expression during early neurogenesis in mouse embryos. Oncogene 9: 2433-2440.Yong Y, Meng Y, Ding H, Fan Z, Tang Y, Zhou C, Luo J, Ke ZJ, 2015. PACT/RAX regulates the migration of cerebellar granule neurons in the developing cerebellum. Sci Rep 5: 7961.Zhang F, Zhang Z, Yan X, Chen H, Zhang W, Hong Y, Huang L, 2014. Genome-wide association studies for hematological traits in Chinese Sutai pigs. BMC Genet 15:41

    Detecting Cryptojacking Web Threats: An Approach with Autoencoders and Deep Dense Neural Networks

    Get PDF
    With the growing popularity of cryptocurrencies, which are an important part of day-to-day transactions over the Internet, the interest in being part of the so-called cryptomining service has attracted the attention of investors who wish to quickly earn profits by computing powerful transactional records towards the blockchain network. Since most users cannot afford the cost of specialized or standardized hardware for mining purposes, new techniques have been developed to make the latter easier, minimizing the computational cost required. Developers of large cryptocurrency houses have made available executable binaries and mainly browser-side scripts in order to authoritatively tap into users’ collective resources and effectively complete the calculation of puzzles to complete a proof of work. However, malicious actors have taken advantage of this capability to insert malicious scripts and illegally mine data without the user’s knowledge. This cyber-attack, also known as cryptojacking, is stealthy and difficult to analyze, whereby, solutions based on anti-malware extensions, blocklists, JavaScript disabling, among others, are not sufficient for accurate detection, creating a gap in multi-layer security mechanisms. Although in the state-of-the-art there are alternative solutions, mainly using machine learning techniques, one of the important issues to be solved is still the correct characterization of network and host samples, in the face of the increasing escalation of new tampering or obfuscation techniques. This paper develops a method that performs a fingerprinting technique to detect possible malicious sites, which are then characterized by an autoencoding algorithm that preserves the best information of the infection traces, thus, maximizing the classification power by means of a deep dense neural network
    corecore