21 research outputs found

    Genomic and phenotypic variation in epidemic-spanning Salmonella enterica serovar Enteritidis isolates.

    Get PDF
    BACKGROUND: Salmonella enterica serovar Enteritidis (S. Enteritidis) has caused major epidemics of gastrointestinal infection in many different countries. In this study we investigate genome divergence and pathogenic potential in S. Enteritidis isolated before, during and after an epidemic in Uruguay. RESULTS: 266 S. Enteritidis isolates were genotyped using RAPD-PCR and a selection were subjected to PFGE analysis. From these, 29 isolates spanning different periods, genetic profiles and sources of isolation were assayed for their ability to infect human epithelial cells and subjected to comparative genomic hybridization using a Salmonella pan-array and the sequenced strain S. Enteritidis PT4 P125109 as reference. Six other isolates from distant countries were included as external comparators.Two hundred and thirty three chromosomal genes as well as the virulence plasmid were found as variable among S. Enteritidis isolates. Ten out of the 16 chromosomal regions that varied between different isolates correspond to phage-like regions. The 2 oldest pre-epidemic isolates lack phage SE20 and harbour other phage encoded genes that are absent in the sequenced strain. Besides variation in prophage, we found variation in genes involved in metabolism and bacterial fitness. Five epidemic strains lack the complete Salmonella virulence plasmid. Significantly, strains with indistinguishable genetic patterns still showed major differences in their ability to infect epithelial cells, indicating that the approach used was insufficient to detect the genetic basis of this differential behaviour. CONCLUSION: The recent epidemic of S. Enteritidis infection in Uruguay has been driven by the introduction of closely related strains of phage type 4 lineage. Our results confirm previous reports demonstrating a high degree of genetic homogeneity among S. Enteritidis isolates. However, 10 of the regions of variability described here are for the first time reported as being variable in S. Enteritidis. In particular, the oldest pre-epidemic isolates carry phage-associated genetic regions not previously reported in S. Enteritidis. Overall, our results support the view that phages play a crucial role in the generation of genetic diversity in S. Enteritidis and that phage SE20 may be a key marker for the emergence of particular isolates capable of causing epidemics

    Evaluation of whole genome sequencing for outbreak detection of Salmonella enterica

    Get PDF
    Salmonella enterica is a common cause of minor and large food borne outbreaks. To achieve successful and nearly 'real-time' monitoring and identification of outbreaks, reliable sub-typing is essential. Whole genome sequencing (WGS) shows great promises for using as a routine epidemiological typing tool. Here we evaluate WGS for typing of S. Typhimurium including different approaches for analyzing and comparing the data. A collection of 34 S. Typhimurium isolates was sequenced. This consisted of 18 isolates from six outbreaks and 16 epidemiologically unrelated background strains. In addition, 8 S. Enteritidis and 5 S. Derby were also sequenced and used for comparison. A number of different bioinformatics approaches were applied on the data; including pan-genome tree, k-mer tree, nucleotide difference tree and SNP tree. The outcome of each approach was evaluated in relation to the association of the isolates to specific outbreaks. The pan-genome tree clustered 65% of the S. Typhimurium isolates according to the pre-defined epidemiology, the k-mer tree 88%, the nucleotide difference tree 100% and the SNP tree 100% of the strains within S. Typhimurium. The resulting outcome of the four phylogenetic analyses were also compared to PFGE revealing that WGS typing achieved the greater performance than the traditional method. In conclusion, for S. Typhimurium, SNP analysis and nucleotide difference approach of WGS data seem to be the superior methods for epidemiological typing compared to other phylogenetic analytic approaches that may be used on WGS. These approaches were also superior to the more classical typing method, PFGE. Our study also indicates that WGS alone is insufficient to determine whether strains are related or un-related to outbreaks. This still requires the combination of epidemiological data and whole genome sequencing results

    Kinase Activity Profiling of Pneumococcal Pneumonia

    Get PDF
    Background: Pneumonia represents a major health burden. Previous work demonstrated that although the induction of inflammation is important for adequate host defense against pneumonia, an inability to regulate the host's inflammatory response within the lung later during infection can be detrimental. Intracellular signaling pathways commonly rely on activation of kinases, and kinases play an essential role in the regulation of the inflammatory response of immune cells. Methodology/Principal Findings: Pneumonia was induced in mice via intranasal instillation of Streptococcus (S.) pneumoniae. Kinomics peptide arrays, exhibiting 1024 specific consensus sequences for protein kinases, were used to produce a systems biology analysis of cellular kinase activity during the course of pneumonia. Several differences in kinase activity revealed by the arrays were validated in lung homogenates of individual mice using western blot. We identified cascades of activated kinases showing that chemotoxic stress and a T helper 1 response were induced during the course of pneumococcal pneumonia. In addition, our data point to a reduction in WNT activity in lungs of S. pneumoniae infected mice. Moreover, this study demonstrated a reduction in overall CDK activity implying alterations in cell cycle biology. Conclusions/Significance: This s

    Low CD4/CD8 T-Cell Ratio Associated with Inflammatory Arthropathy in Human T-Cell Leukemia Virus Type I Tax Transgenic Mice

    Get PDF
    Human T-cell leukemia virus type I (HTLV-1) can cause an aggressive malignancy known as adult T-cell leukemia/lymphoma (ATL) as well as inflammatory diseases such as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). A transgenic mouse that expresses HTLV-1 Tax also develops T-cell leukemia/lymphoma and an inflammatory arthropathy that resembles rheumatoid arthritis. The aim of this study was to identify the primary T-cell subsets involved in the development of arthropathy in Tax transgenic mice. mRNA was strong in the spleen and joints of arthropathic mice, with a 40-fold increase compared with healthy transgenic mice.Our findings reveal that Tax transgenic mice develop rheumatoid-like arthritis with proliferating synovial cells in the joints; however, the proportion of different splenic T-cell subsets in these mice was completely different from other commonly used animal models of rheumatoid arthritis. The crucial T-cell subsets in arthropathic Tax transgenic mice appear to resemble those in HAM/TSP patients rather than those in rheumatoid arthritis patients

    Single Dose Novel Salmonella Vaccine Enhances Resistance against Visceralizing L. major and L. donovani Infection in Susceptible BALB/c Mice

    Get PDF
    Visceral leishmaniasis is a major neglected tropical disease, with an estimated 500,000 new cases and more than 50,000 deaths attributable to this disease every year. Drug therapy is available but costly and resistance against several drug classes has evolved. Despite all efforts, no commercial, let alone affordable, vaccine is available to date. Thus, the development of cost effective, needle-independent vaccines is a high priority. Here, we have continued efforts to develop live vaccine carriers based on recombinant Salmonella. We used an in silico approach to select novel Leishmania parasite antigens from proteomic data sets, with selection criteria based on protein abundance, conservation across Leishmania species and low homology to host species. Five chosen antigens were differentially expressed on the surface or in the cytosol of Salmonella typhimurium SL3261. A two-step procedure was developed to select optimal Salmonella vaccine strains for each antigen, based on bacterial fitness and antigen expression levels. We show that vaccine strains of Salmonella expressing the novel Leishmania antigens LinJ08.1190 and LinJ23.0410 significantly reduced visceralisation of L. major and enhanced systemic resistance against L. donovani in susceptible BALB/c mice. The results show that Salmonella are valid vaccine carriers for inducing resistance against visceral leishmaniasis but that their use may not be suitable for all antigens

    Cell-to-Cell Transformation in Escherichia coli: A Novel Type of Natural Transformation Involving Cell-Derived DNA and a Putative Promoting Pheromone

    Get PDF
    Escherichia coli is not assumed to be naturally transformable. However, several recent reports have shown that E. coli can express modest genetic competence in certain conditions that may arise in its environment. We have shown previously that spontaneous lateral transfer of non-conjugative plasmids occurs in a colony biofilm of mixed E. coli strains (a set of a donor strain harbouring a plasmid and a plasmid-free recipient strain). In this study, with high-frequency combinations of strains and a plasmid, we constructed the same lateral plasmid transfer system in liquid culture. Using this system, we demonstrated that this lateral plasmid transfer was DNase-sensitive, indicating that it is a kind of transformation in which DNase-accessible extracellular naked DNA is essential. However, this transformation did not occur with purified plasmid DNA and required a direct supply of plasmid from co-existing donor cells. Based on this feature, we have termed this transformation type as ‘cell-to-cell transformation’. Analyses using medium conditioned with the high-frequency strain revealed that this strain released a certain factor(s) that promoted cell-to-cell transformation and arrested growth of the other strains. This factor is heat-labile and protease-sensitive, and its roughly estimated molecular mass was between ∌9 kDa and ∌30 kDa, indicating that it is a polypeptide factor. Interestingly, this factor was effective even when the conditioned medium was diluted 10–5–10–6, suggesting that it acts like a pheromone with high bioactivity. Based on these results, we propose that cell-to-cell transformation is a novel natural transformation mechanism in E. coli that requires cell-derived DNA and is promoted by a peptide pheromone. This is the first evidence that suggests the existence of a peptide pheromone-regulated transformation mechanism in E. coli and in Gram-negative bacteria

    Distinct Salmonella Enteritidis lineages associated with enterocolitis in high-income settings and invasive disease in low-income settings.

    Get PDF
    An epidemiological paradox surrounds Salmonella enterica serovar Enteritidis. In high-income settings, it has been responsible for an epidemic of poultry-associated, self-limiting enterocolitis, whereas in sub-Saharan Africa it is a major cause of invasive nontyphoidal Salmonella disease, associated with high case fatality. By whole-genome sequence analysis of 675 isolates of S. Enteritidis from 45 countries, we show the existence of a global epidemic clade and two new clades of S. Enteritidis that are geographically restricted to distinct regions of Africa. The African isolates display genomic degradation, a novel prophage repertoire, and an expanded multidrug resistance plasmid. S. Enteritidis is a further example of a Salmonella serotype that displays niche plasticity, with distinct clades that enable it to become a prominent cause of gastroenteritis in association with the industrial production of eggs and of multidrug-resistant, bloodstream-invasive infection in Africa.This work was supported by the Wellcome Trust. We would like to thank the members of the Pathogen Informatics Team and the core sequencing teams at the Wellcome Trust Sanger Institute (Cambridge, UK). We are grateful to D. Harris for work in managing the sequence data

    Phylogeographical analysis of the dominant multidrug-resistant H58 clade of Salmonella Typhi identifies inter- and intracontinental transmission events.

    Get PDF
    The emergence of multidrug-resistant (MDR) typhoid is a major global health threat affecting many countries where the disease is endemic. Here whole-genome sequence analysis of 1,832 Salmonella enterica serovar Typhi (S. Typhi) identifies a single dominant MDR lineage, H58, that has emerged and spread throughout Asia and Africa over the last 30 years. Our analysis identifies numerous transmissions of H58, including multiple transfers from Asia to Africa and an ongoing, unrecognized MDR epidemic within Africa itself. Notably, our analysis indicates that H58 lineages are displacing antibiotic-sensitive isolates, transforming the global population structure of this pathogen. H58 isolates can harbor a complex MDR element residing either on transmissible IncHI1 plasmids or within multiple chromosomal integration sites. We also identify new mutations that define the H58 lineage. This phylogeographical analysis provides a framework to facilitate global management of MDR typhoid and is applicable to similar MDR lineages emerging in other bacterial species

    Sheep Lung Segmental Delivery Strategy Demonstrates Adenovirus Priming of Local Lung Responses to Bacterial LPS and the Role of Elafin as a Response Modulator

    Get PDF
    Viral lung infections increase susceptibility to subsequent bacterial infection. We questioned whether local lung administration of recombinant adenoviral vectors in the sheep would alter the susceptibility of the lung to subsequent challenge with bacterial lipopolysaccharide (LPS). We further questioned whether local lung expression of elafin, a locally produced alarm anti-LPS/anti-bacterial molecule, would modulate the challenge response. We established that adenoviral vector treatment primed the lung for an enhanced response to bacterial LPS. Whereas this local effect appeared to be independent of the transgene used (Ad-o-elafin or Ad-GFP), Ad-o-elafin treated sheep demonstrated a more profound lymphopenia in response to local lung administration of LPS. The local influence of elafin in modulating the response to LPS was restricted to maintaining neutrophil myeloperoxidase activity, and levels of alveolar macrophage and neutrophil phagocytosis at higher levels post-LPS. Adenoviral vector-bacterial synergism exists in the ovine lung and elafin expression modulates such synergism both locally and systemically

    An extended genotyping framework for Salmonella enterica serovar Typhi, the cause of human typhoid.

    Get PDF
    The population of Salmonella enterica serovar Typhi (S. Typhi), the causative agent of typhoid fever, exhibits limited DNA sequence variation, which complicates efforts to rationally discriminate individual isolates. Here we utilize data from whole-genome sequences (WGS) of nearly 2,000 isolates sourced from over 60 countries to generate a robust genotyping scheme that is phylogenetically informative and compatible with a range of assays. These data show that, with the exception of the rapidly disseminating H58 subclade (now designated genotype 4.3.1), the global S. Typhi population is highly structured and includes dozens of subclades that display geographical restriction. The genotyping approach presented here can be used to interrogate local S. Typhi populations and help identify recent introductions of S. Typhi into new or previously endemic locations, providing information on their likely geographical source. This approach can be used to classify clinical isolates and provides a universal framework for further experimental investigations
    corecore