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Abstract

An epidemiological paradox surrounds Salmonella enterica serovar Enteritidis. In high-income 

settings, it has been responsible for an epidemic of poultry-associated, self-limiting enterocolitis, 

whilst in sub-Saharan Africa it is a major cause of invasive nontyphoidal Salmonella disease, 

associated with high case-fatality. Whole-genome sequence analysis of 675 isolates of S. 
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Enteritidis from 45 countries reveals the existence of a global epidemic clade and two novel clades 

of S. Enteritidis that are each geographically restricted to distinct regions of Africa. The African 

isolates display genomic degradation, a novel prophage repertoire and have an expanded, 

multidrug resistance plasmid. S. Enteritidis is a further example of a Salmonella serotype that 

displays niche plasticity, with distinct clades that enable it to become a prominent cause of 

gastroenteritis in association with the industrial production of eggs, and of multidrug resistant, 

bloodstream invasive infection in Africa.
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Introduction

Salmonella enterica serovar Enteritidis (hereafter referred to as S. Enteritidis) has been a 

global cause of major epidemics of enterocolitis, which have been strongly associated with 

intensive poultry farming and egg production1. The serovar is usually considered to be a 

generalist in terms of host range and has a low human invasiveness index, typically causing 

self-limiting enterocolitis2. Following a number of interventions in the farming industry 

involving both improved hygiene and poultry vaccination, epidemic S. Enteritidis has been 

in decline in many countries including the United Kingdom and USA3,4. S. Enteritidis has 

also been used extensively since the early 1900s as a rodenticide (named the “Danysz 

virus”), following development at Institut Pasteur, France. Although by the 1960s, 

Salmonella-based rodenticides had been banned in the US, Germany and the UK, S. 

Enteritidis is still produced as a rodenticide in Cuba, under the name Biorat®5.

Serovars of Salmonella that cause enterocolitis in industrialised settings are strongly 

associated with life-threatening invasive nontyphoidal Salmonella (iNTS) disease in sub-

Saharan Africa (SSA). S. Enteritidis and Salmonella enterica serovar Typhimurium (S. 

Typhimurium) are the two leading causes of iNTS disease in SSA6 and both are associated 

with multidrug resistance (MDR)7. The clinical syndrome iNTS disease is associated with 

immunosuppression in the human host, particularly malnutrition, severe malaria and 

advanced HIV in young children and advanced HIV in adults8. It has been estimated to 

cause 681,000 deaths per year9.

Salmonella is a key example of a bacterial genus in which there is a recognizable genomic 

signature that distinguishes between a gastrointestinal and an extra-intestinal/invasive 

lifestyle10, whereby functions required for escalating growth in an inflamed gut are lost 

when the lineage becomes invasive11. In order to investigate whether there were distinct 

bacterial characteristics explaining the very different epidemiological and clinical profile of 

epidemic isolates of serotype S. Typhimurium from SSA and industrialised settings, whole-

genome sequence (WGS) investigations of this serovar were previously undertaken. These 

revealed a novel pathotype of multilocus sequence type (MLST) ST313 from SSA, which 

differed from clades that cause enterocolitis in industrialised settings, by showing patterns of 

Feasey et al. Page 3

Nat Genet. Author manuscript; available in PMC 2017 February 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



genomic degradation potentially associated with more invasive disease and differential host 

adaptation12–17.

In relation to S. Enteritidis, there is a growing body of literature on the evolutionary history, 

phylogeny and utility of WGS for surveillance of S. Enteritidis outbreaks18–20. The 

broadest study of the phylogeny to date revealed five major lineages, but contained only two 

African isolates21. There have also been limited reports of isolates of S. Enteritidis from 

African patients living in Europe that are MDR and which display a distinct phage type (PT 

42)22,23. We therefore hypothesized that there are distinct lineages of S. Enteritidis 

circulating in both the industrialised and developing world with different origins, likely 

distinct routes of spread and that are associated with different patterns of disease, which will 

display the distinct genomic signatures characteristic of differential adaptation. To 

investigate this we have collected a highly diverse global collection of S. Enteritidis isolates 

and compared them using whole-genome sequencing, the highest possible resolution typing 

methodology.

Results

Isolate collection

In total, 675 isolates of S. Enteritidis isolated between 1948 and 2013 were sequenced. The 

collection originated from 45 countries and six continents (Table 1). 496/675 isolates were 

from Africa, with 131 from the Republic of South Africa (RSA), a further 353 from the rest 

of SSA, and 12 from North Africa (Table 1). There were 343 isolates from normally sterile 

human sites (invasive), 124 non-invasive human isolates (predominantly stool samples) and 

40 from animal, food or environmental sources. The full metadata are described in 

Supplementary Table 1 and have been uploaded to the publically available database 

Enterobase.

Phylogeny

675 S. Enteritidis genomes and one Salmonella enterica serovar Gallinarum were mapped to 

the S. Enteritidis strain P125109 reference sequence, variable regions excluded and the 

remaining sites were screened for single nucleotide polymorphisms (SNPs). This left an 

alignment containing a total of 42,373 variable sites, from which a maximum likelihood 

(ML)-phylogeny was constructed using S. Gallinarum, which is a closely related serovar, as 

an out-group (Figure 1). HierBAPS was run over two rounds, which provided clear 

distinction between clades/clusters24. The phylogeny of S. Enteritidis revealed evidence of 

three clades associated with epidemics, one which we have termed the ‘global epidemic 

clade’ and includes the reference PT4 isolate P125109 and two African clades: one 

predominantly composed of West African isolates (labeled the ‘West African clade’) and a 

second composed of isolates predominantly originating in Central and Eastern Africa, called 

the ‘Central/Eastern African clade’). Figure 1 also shows the other clades and clusters 

predicted by HierBAPS, the largest of which is a paraphyletic cluster from which the global 

epidemic clade emerged (Outlier Cluster in Figure 1), and a further five smaller clades or 

clusters predicted by HierBAPS.
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The global epidemic clade contains isolates of multiple phage types, including 4 and 1, 

which have been linked to the global epidemic of poultry associated human enterocolitis25. 

It comprised 250 isolates from 28 countries, including 43 from Malawi and 82 from RSA. 

They were isolated from across a 63-year period (1948-2013). Antimicrobial susceptibility 

testing had been performed on 144 isolates and 104 were susceptible to all antimicrobials 

tested, five were multidrug resistant (MDR: resistant to 3 or more antimicrobial classes), one 

was nalidixic acid resistant and none were extended-spectrum beta-lactamase (ESBL)-

producing isolates. Database comparison of the genomes from this clade revealed that 221 

(88%) of them contained no predicted antimicrobial resistance (AMR) genes apart from the 

cryptic resistance gene aac(6')-Iy26.

The global epidemic clade has emerged from a diverse cluster previously described by 

Zheng27, which encompassed 131 isolates (Figure 1: ‘Outlier Cluster’). In addition to being 

paraphyletic, this group was geographically and temporally diverse, and predominantly drug 

susceptible (59/71 isolates). Whilst the majority of the diversity of phage typed isolates was 

contained within the global epidemic clade, this cluster alone contained isolates of phage 

type 14b, which was recently associated with a multi-country outbreak of S. Enteritidis 

enterocolitis in Europe associated with chicken eggs from Germany28. There were also 41 

isolates from RSA in this clade, where it has been a common cause of bloodstream infection, 

and 39 bloodstream isolates from Malawi. Database comparison of the genomes from this 

clade revealed that 122 (82%) of these genomes contained no predicted AMR genes apart 

from the cryptic resistance gene aac(6')-Iy.

There were two related, but phylogenetically and geographically distinct, epidemic clades 

that largely originated from SSA. The Central/Eastern African clade included 166 isolates, 

all but two of which (from RSA) came from this region. Of these, 126/155 (82%) were 

MDR and 148/153 (97%) displayed phenotypic resistance to between one and four 

antimicrobial classes. All of these genomes contained at least five predicted resistance genes 

and 128 (77%) contained nine (Table 2 and Supplementary Table 2). 155/165 (94%) of these 

isolates were cultured from a normally sterile compartment of a human (i.e. blood or 

cerebrospinal fluid) and were considered to be causing invasive disease (Table 2). The 

second African epidemic clade was significantly associated with West Africa with 65/66 

isolates coming from this region and one isolate from USA. This clade was also associated 

with drug resistance (62 [94%] resistant to ≥1 antimicrobial class by phenotype and 

genotype) and human invasive disease (61 [92%]). It also included two isolates that were 

subtyped as phage type 4.

The remaining 58 isolates included in this study were extremely diverse, phylogenetically, 

temporally and geographically. Only two displayed any phenotypic AMR, one of which was 

MDR. Inspection of the genome revealed that five had predicted AMR genes in addition to 

aac(6')-Iy, four of which were isolated in sub-Saharan Africa. Twenty were associated with 

invasive human disease, and six were recovered from stool. Three isolates were from stocks 

of rodenticide and these were phylogenetically remote from both global-epidemic and the 

two African epidemic clades.
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To add further context to these findings we screened the entire publically available Public 

Health England (PHE) sequenced Salmonella routine surveillance collection, which includes 

2,986 S. Enteritidis genomes, 265 of which were associated with travel to Africa 

(Supplementary Figure 1). Within this huge collection, including 61 (2.0%) bloodstream 

isolates and 2670 (89.4%) stool isolates, only 6 isolates (4 from blood culture, 1 from stool) 

fell within to the West African clade and 1 (from stool) belonged to the Central/Eastern 

African clade. Notably, these isolates were all either associated with travel to Africa and/or 

taken from patients of African origin.

It is apparent from the location of the archetypal reference isolate and archetypal phage 

types in the phylogeny (Supplementary Figure 2) that the majority of S. Enteritidis studied 

previously belonged to the global epidemic clade associated with enterocolitis in 

industrialised countries. Furthermore, its also clear that two additional, previously 

unrecognized S. Enteritidis lineages have emerged, largely restricted to Africa, that are 

strongly associated with MDR and invasive disease.

To understand how recently these Africa-associated lineages emerged we used Bayesian 

Evolutionary Analysis by Sampling Trees (BEAST) to reconstruct the temporal history of 

the epidemic clades29. These data (Supplementary Figure 3) estimate the most recent 

common ancestor (MRCA) of the Central/Eastern African clade dates to 1945 (95% 

Credible Interval [CrI]: 1924-1951) and for the West African clade it was 1933 (95% CrI: 

1901-1956). We estimate the MRCA of the global epidemic clade originated around 1918 

(95% CrI: 1879-1942 – Supplementary Figure 4), with a modern expansion occurring in 

1976 (95% CrI: 1968-1983), whereas the paraphyletic cluster from which it emerged dates 

to approximately 1711 (95% CrI: 1420-1868).

Contribution of the accessory genome

Prophages have the potential to carry non-essential "cargo" genes, which suggests they 

confer a level of specialization to their host bacterial species, whilst plasmids may confer a 

diverse array of virulence factors and AMR 30,31. Therefore it is critical to evaluate the 

accessory genome in parallel with the core. 622 sequenced genomes were used to determine 

a pangenome, which yielded a core genome comprising 4,076 predicted genes present in 

≥90% isolates, including all 12 recognised Salmonella Pathogenicity Islands as well as all 13 

fimbrial operons found in the P125109 reference32. The core gene definition was set to 

minimize stochastic loss of genes from the core due to errors in individual assemblies across 

such a large dataset. The accessory genome consisted of 14,015 predicted genes. Of the 

accessory genes, 324 were highly conserved across the global and two African epidemic 

clades, as well as the outlier cluster. Almost all were associated with the acquisition or loss 

of mobile genetic elements (MGEs) such as prophage or plasmids. Prophage regions have 

been shown to be stable in Salmonella genomes and are potential molecular markers, the 

presence of which has previously been used to distinguish specific clades13,33.

The lineage-specific whole gene differences of the major clades are summarized in Figure 2 

and plotted against the representatives of the four major clades in Supplementary Figure 5. 

The lineage specific sequence regions include 57 predicted genes found to be unique to the 

global epidemic clade (Figure 2), all of which were associated with prophage ΦSE20, a 
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region shown to be essential for invasion of chicken ova and mice in one previous study34. 

There were a further 39 genes conserved in the global epidemic and the paraphyletic 

outlying cluster, which were absent from both African clades, 26 of which correspond to 

region of difference (ROD) 2132. The Central/Eastern Africa clade contained 77 predicted 

genes that were absent in the other clades. 33 were associated with the virulence plasmid 

and a further 40 chromosomal genes were associated with a novel, Fels-2 like prophage 

region (ϕfels-BT). The West African clade had only 15 distinct predicted genes, 11 of which 

were plasmid-associated. The two African clades shared a further 102 genes: 48, including a 

leucine-rich repeat region, were associated with a novel prophage region closely related to 

Enterobacter phage P88, 44 were associated with a Gifsy-1 prophage found in S. 

Bovismorbificans and eight were associated with a Gifsy-2 prophage which has degenerated 

in the reference P125109.

The S. Enteritidis plasmid is the smallest of the generic Salmonella virulence plasmids at 58 

kb and is unusual in that it contains an incomplete set of tra genes that are responsible for 

conjugative gene transfer. The phylogeny of the S. Enteritidis virulence plasmid backbone 

was reconstructed using reads that mapped to the S. Enteritidis reference virulence plasmid, 

pSENV. 120/675 (18%) genomes lacked pSENV. The virulence plasmid phylogeny is 

similar to that of the chromosome, suggesting that they have been stably maintained by each 

lineage and diversified alongside them (Supplementary Figure 6).

The virulence plasmids from the African clades were much larger than those held in the 

other clades at ~90 kb. A representative example was extracted from Malawian isolate 

D7795, sequenced using long read technology to accurately reconstruct it (PacBio; see 

methods) and denoted pSEN-BT (Accession number LN879484). pSEN-BT is composed of 

a backbone of pSENV with additional regions that are highly similar to recently sequenced 

fragments of an novel S. Enteritidis virulence plasmid (pUO-SeVR) isolated from an 

African patient presenting with MDR invasive S. Enteritidis in Spain22. Plasmid pSEN-BT 

harbours nine AMR genes (full list in Supplementary Table 2), plus additional genes 

associated with virulence and a toxin/antitoxin plasmid addiction system. Of note, plasmids 

from the West African isolates carry resistance gene chloramphenicol acetyl transferase A1 

(catA1), whereas the Central/Eastern African strains carry catA2 and tetracycline resistance 

gene tet(A). Like pSENV, the African virulence plasmid contained an incomplete set of tra 
genes and so is not self-transmissible. This was confirmed by conjugation experiments and 

is consistent with previous reports22,23. These observations suggest that the evolution of the 

S. Enteritidis plasmid mirrors that of the chromosome; it is thus not a ‘novel’ plasmid, but in 

different SSA locations has acquired different AMR genes.

Multiple signatures of differential host adaptation

It has been observed in multiple serovars of Salmonella including S. Typhi, S. Gallinarum 

and S. Typhimurium ST313 that the degradation of genes necessary for the utilization of 

inflammation-derived nutrients is a marker of that lineage having moved from an intestinal 

to a more invasive lifestyle13,14,32,35. Accordingly, we have looked for similar evidence 

within a representative example of a MDR, invasive, Central/Eastern African clade isolate, 

D7795, that was isolated from the blood of a Malawian child in 2000. The draft genome 
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sequence of D7795 closely resembles that of P125109, however, in addition to the novel 

prophage repertoire and plasmid genes described above, it harbours a number of predicted 

pseudogenes or hypothetically disrupted genes (HDGs)11.

In total, there were 42 putative HDGs in D7795, many of which are found in genes involved 

in gut colonisation and fecal shedding as well as various metabolic processes such as 

cobalamine biosynthesis which is a cofactor for anaerobic catabolism of inflammation-

derived nutrients, such as ethanolamine, following infection36. Curation of the SNPs and 

insertions or deletions (indels) predicted to be responsible for pseudogenisation across the 

Central/Eastern African clade and West African clade revealed 37/42 predicted HDGs were 

fixed in other representatives of the Central/East African clade, with 27 of them being 

present in over 90% of isolates from that clade. Relatively fewer HDGs in D7795 (19/42) 

were present in representatives of the West African clade, although 13 were present in ≥90% 

of isolates (Supplementary Table 3).

In addition to this evidence of reductive evolution in D7795, there were 363 genes 

containing non-synonymous (NS)-SNPs, which change the amino acid sequence and so may 

have functional consequences37. The two African clades were screened for the presence of 

these NS-SNPs and 131 were found to be present and completely conserved across both 

clades, including NS-SNPs in 43 genes encoding predicted membrane proteins, 36 metabolic 

genes and 23 conserved hypothetical genes (Supplementary Table 4). Furthermore many of 

these NS-SNPs fall in genes within the same metabolic pathways as the HDGs (see 

Supplementary Note for detailed description). Supplementary Table 5 provides a list of some 

of the common traits identified amongst the functions of genes lost independently by D7795, 

S. Typhi and S. Gallinarum. The disproportionate clustering of mutations in membrane 

structures observed in the African clades is yet another sign of differential host adaptation 

analogous to that reported in both S. Typhi35 and S. Gallinarum32.

Biolog™ growth substrate platform profiling

The Biolog™ platform was utilized to generate a substrate growth utilisation profile for 

selected S. Enteritidis isolates. Corresponding signal values of replicate pairs of a Central/

Eastern African isolate (D7795) and a global epidemic isolate (A1636) were compared using 

principal component analysis and found to be highly consistent. In total, 80 metabolites 

showed evidence of differential metabolic activity (Figure 3). Evaluation of data from the 

Central/Eastern African isolate using Pathway Tools software revealed that 14/27 (52%) of 

pathways with evidence of decreased metabolic activity at 28°C had a corresponding 

component of genomic degradation. This was also true for 12/30 (40%) of pathways with 

evidence of decreased metabolic activity at 37°C.

Instances of reduced metabolic activity in a Central/Eastern African strain (D7795) 

compared to a global epidemic strain (A1636) included dulcitol and glycolic acid in the 

glycerol degradation pathway, propionic acid in the propanediol pathway and ethylamine 

and ethanolamine. These are all vitamin B12 (cobalamin) dependent reactions, for which 

there was a corresponding signature of genomic degradation. Also there was reduced activity 

in response to three forms of butyric acid, alloxan and allantoic acid metabolism. Allantoin 

can be found in the serum of birds, but not humans and is utilised as a carbon source during 
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S. Enteritidis infection of chickens38, and HDGs relating to allantoin have been noted in S. 
Typhimurium ST31313. The full list of differences is detailed in Supplementary Table 6 and 

7. This is a further sign of decreased metabolism of the Central/Eastern African isolate in the 

anaerobic environment of the gut.

Chick infection model suggests divide in host range

Given the phenotypic differences observed in the genotypically distinct global and African 

clades, we hypothesized that these lineages could have differing infection phenotypes in an 

in vivo challenge model. We compared the infection profile of a member of the Central/

Eastern African clade (D7795) to the reference global epidemic strain P125109 in an avian 

host. The chicken group infected with P125109 showed mild hepatosplenomegaly consistent 

with infection by this Salmonella serovar and cecal colonization (Figure 4A-C). In contrast, 

the Central/Eastern African strain displayed significantly reduced invasion at 7 dpi of both 

liver (p=0.027) and spleen (p=0.007), however cecal colonization was not significantly 

reduced (p=0.160). This is in marked contrast to the behavior of S. Typhimurium ST313, 

which is more invasive in a chick infection model12.

Discussion

S. Enteritidis is an example of a successful Salmonella lineage with the apparent ability to 

adapt to different hosts and transmission niches as and when opportunities for specialization 

have presented. Langridge et al recently evaluated the Enteritidis/Gallinarum/Dublin lineage 

of Salmonella, revealing components of the nature and order of events associated with host-

range and restriction39. In the present study, we have highlighted the plasticity of S. 

Enteritidis, providing evidence of three distinct epidemics of human disease. In addition we 

show multiple additional clades and clusters that demonstrate the huge reservoir of diversity 

amongst S. Enteritidis from which future epidemics might emerge.

An important question posed by this study is why have distinct clades of Salmonella 
emerged to become prominent causes of iNTS disease in Africa, from a serotype normally 

considered to be weakly invasive? The presence of a highly immunosuppressed population 

due to the HIV pandemic is clearly a key host factor that facilitates the clinical syndrome 

iNTS disease40,41. In addition to human host factors, there are two distinct African 

epidemic lineages that have emerged in the last 90 years. Both lineages are significantly 

associated with a novel prophage repertoire, an expanded, MDR-augmented virulence 

plasmid, and patterns of genomic degradation with similarity to other host-restricted invasive 

Salmonella serotypes including S. Typhi and S. Gallinarum and to clades of S. Typhimurium 

associated with invasive disease in Africa13,32,35. This pattern of genomic degradation is 

concentrated in pathways specifically associated with an enteric lifestyle, however it is 

noteworthy that in the chick infection model, the African S. Enteritidis invaded the chick 

liver and spleen less well than the global pandemic clade. This raises the possibility that the 

two clades occupy different ecological niches outside the human host or that they behave 

differently within the human host and screening of the huge S. Enteritidis collection from 

routine Salmonella surveillance by PHE supports the assertion that these lineages are 

geographically restricted to Africa. This study therefore indicates a need to understand what 
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these ecological niches might be, and then to define the transmission pathways of African 

clades of S. Enteritidis, in order to facilitate public health interventions to prevent iNTS 

disease.

The evolution of the S. Enteritidis virulence plasmid is intriguing; pSENV is the smallest of 

the known Salmonella virulence-associated plasmids, but in SSA, the plasmid has nearly 

doubled in size partly through the acquisition of AMR genes. The absence of tra genes 

necessary for conjugal transfer either indicates that MDR status has evolved through 

acquisition of MGEs multiple times or through clonal expansion and vertical transmission of 

the plasmid to progeny. The available data suggest that the former scenario has happened 

twice, once in West Africa, and once in Central/Eastern Africa.

Despite S. Enteritidis being reported as a common cause of bloodstream infection (BSI) in 

Africa6,7 the Global Enteric Multicenter Study (GEMS) found that Salmonella serotypes 

were an uncommon cause of moderate to severe diarrhoea in African children less than 5-

years of age42. Our data associating the African lineages with invasive disease is also 

consistent with data presented in a recent Kenyan study comparing a limited number and 

diversity of S. Enteritidis isolates from blood and stool. Applying the lineages defined in this 

study to the genome data reported from Kenya showed that 20.4% of isolates from that study 

belonging to the global clade were associated with invasive disease, whereas 63.2% of the 

isolates in that study belonging to our Central/Eastern African clade were associated with 

invasive disease43. The remaining isolates were associated with cases of enterocolitis or 

asymptomatic carriage, confirming that the Central/Eastern African clade can also cause 

enterocolitis. The association of S. Enteritidis clades circulating in sub-Saharan Africa with 

iNTS disease may reflect the fact that their geographical distribution permits them to behave 

as opportunistic invasive pathogens in a setting where advanced immunosuppressive disease 

is highly prevalent in human populations.

In summary, two clades of S. Enteritidis have emerged in Africa, which have different 

phenotypes and genotypes to the strains of S. Enteritidis circulating in the industrial world. 

These strains display evidence of changing host adaptation, different virulence determinants 

and multi-drug resistance, a parallel situation to the evolutionary history of S. Typhimurium 

ST313. They may have different ecologies and/or host ranges to global strains and have 

caused epidemics of BSI in at least three countries in SSA, yet are rarely responsible for 

disease in South Africa. An investigation into the environmental reservoirs and transmission 

of these pathogens is warranted and urgently required.

Online Methods

Bacterial Isolates

S. Enteritidis isolates were selected on the basis of six factors; date of original isolation, 

antimicrobial susceptibility pattern, geographic site of original isolation, source (human 

[invasive vs stool], animal or environmental), phage type (where available), and multilocus 

variable number tandem repeat (MLVA) type (where available). S. Enteritidis P125109 

(EMBL accession no. AM933172) isolated from a poultry farm from the UK was used as a 
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reference32. The full metadata are in Supplementary Table 1. Isolates have been attributed to 

region according to United Nations statistical divisions.

Sequencing, SNP-calling, construction of phylogeny and comparative genomics

PCR libraries were prepared from 500 ng of DNA as previously described45. Isolates were 

sequenced using Illumina GA II, HiSeq 2000 and MiSeq machines (Illumina, San Diego, 

CA, USA) and 150 bp paired-end reads were generated. The strains were aligned to 

Salmonella Enteritidis reference genome P125109 using a pipeline developed in-house at the 

Wellcome Trust Sanger Institute (WTSI). For each isolate sequenced, the raw sequence read 

pairs were split to reduce the overall memory usage and allow reads to be aligned using 

more than one CPU. The reads were then aligned using SMALT, a hashing based sequence 

aligner. The aligned and unmapped reads were combined into a single BAM file. Picard was 

used to identify and flag optical duplicates generated during the making of a standard 

Illumina library, which reduces possible effects of PCR bias. All of the alignments were 

created in a standardized manner, with the commands and parameters stored in the header of 

each BAM file, allowing for the results to be easily reproduced.

The combined BAM file for each isolate was used as input data in the SAMtools mpileup 

program to call SNPs and small indels, producing a BCF file describing all of the variant 

base positions46. A pseudo-genome was constructed by substituting the base call at each 

variant or non-variant site, defined in the BCF file, in the reference genome. Only base calls 

with a depth of coverage >4 or quality >50 were considered in this analysis. Base calls in the 

BCF file failing this quality control filter were replaced with the “N” character in the 

pseudo-genome sequence.

All of the software developed is freely available for download from GitHub under an open 

source license, GNU GPL 3.

Phylogenetic modelling was based on the assumption of a single common ancestor, therefore 

variable regions where horizontal genetic transfer occurs were excluded47,48. A maximum 

likelihood (ML) phylogenetic tree was then built from the alignments of the isolates using 

RAxML (version 7.0.4) using a GTR+I+G model49. The maximum-likelihood phylogeny 

was supported by 100 bootstrap pseudo-replicate analyses of the alignment data. Clades 

were predicted using Hierarchical Bayesian Analysis of Population Structure (HierBAPS)24. 

This process was repeated to construct the plasmid phylogeny, using reads that aligned to 

pSENV.

To ascertain the presence of the clusters defined by HierBAPs in the Public Health England 

(PHE) routine Salmonella surveillance collection, seventeen isolates representing the 

diversity of the collection were compared against 2986 S. Enteritidis PHE genomes. Single 

linkage SNP clustering was performed as previously described50. A maximum-likelihood 

phylogeny showing the integration of the seventeen isolates with 50-SNP cluster 

representatives of the PHE S. Enteritidis collection was constructed as above. FASTQ reads 

from all PHE sequences in this study can be found at the PHE Pathogens BioProject at the 

National Center for Biotechnology Information (Accession PRJNA248792).
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Temporal reconstruction was performed using Bayesian Evolutionary Analysis Sampling 

Trees (BEAST version 1.8.2)51. A relaxed lognormal clock model was initially employed. 

The results of this model indicated that a constant clock model was not appropriate, as the 

posterior of the standard deviation of the clock rate did not include zero. A range of 

biologically plausible population models (constant, exponential and skyline) was 

investigated. Skyline models can be biased by non-uniform sampling and we observed a 

strong similarity between reconstructed skyline population and the histogram of sampling 

dates and so this model was excluded. The exponential models consistently failed to 

converge and were excluded. Thus, for all datasets, lognormal clock and constant population 

size models were used. The computational expense required for this analysis precluded 

running estimators for model selection. However, we note that Deng et al used the same 

models in their analysis of 125 S. Enteritidis isolates. Default priors were used except for 

ucld.mean, Gamma(0.001,1000), initial: 0.0001; exponential.popSize, LogNormal(10,1.5), 

initial: 121.

Three chains of 100 million states were run in parallel for each clade of the four major 

HierBAPS clades, as well as a fourth chain without genomic data to examine the influence 

of the prior, which in all cases was uninformative. The final results, as used here, all had 

effective sample sizes (ESS) of over 200 and had convergence between all three runs. For the 

Global and Global Outlier lineages, the datasets were not computationally feasible to 

analyse. We thus created 3 further random subsets of the data by drawing n isolates from 

each sampled year where n was sampled from a Poisson distribution where λ=2. The 

posteriors of all subsets were extremely similar and runs were combined to produce the final 

most recent common ancestor (MRCA) estimates.

In order to gain a detailed insight into genomic differences, a single high quality sequence 

from Malawian S. Enteritidis isolate D7795 was aligned against the P125109 using 

ABACAS and annotated52. Differences were manually curated against the reference using 

the Artemis Comparison Tool (ACT)53. Sections of contigs which were incorporated into 

the alignment, but which did not align with P125109 were manually inspected and compared 

to the public databases using BLASTn. When these regions appeared to be novel prophages, 

they were annotated using the phage search tool PHAST and manually curated54. In order to 

investigate whether the SNPs and/or indels that were predicted to be responsible for 

pseudogene formation in D7795 were distinct to that isolate or conserved across both 

African epidemic clades, all isolates were aligned to P12509 and the relevant SNPs/indels 

investigated using in-silico PCR of the aligned sequences. Manual curation was performed 

to confirm the nature of all pseudogene-associated SNPs/indels. NS-SNPs identified in 

D7795 were sorted throughout the African clades by extracting and aligning the appropriate 

gene sequences from P125109 and D7795. The coordinates of the NS-SNPs were then used 

to identify the relevant sequence and determine the nature of the base.

Accessory genome

The pangenome for the dataset was predicted using ROARY 55. Genes were considered to 

be core to S. Enteritidis if present in ≥90% of isolates. A relaxed definition of core genome 

was used as assemblies were used to generate it and the more assemblies one uses, the more 
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likely it is that a core gene will be missed in one sample due to an assembly error. The 

remaining genes were considered to be core to the clades/clusters predicted by HierBAPS if 

present in ≥75% if isolates from within each clade/cluster. These genes were then curated 

manually using ACT to search for their presence and position in P125109 or the improved 

draft assembly of representative isolates of each of the other clades if not present in 

P125109. Any large accessory regions identified were blasted against the assembled 

genomes of the entire collection to confirm they were grossly intact.

Plasmid identification

Plasmid DNA was extracted from isolate D7795 using the Kado & Liu method and 

separated by gel-electrophoresis alongside plasmids of known size, to estimate the number 

and size of plasmids present56. Plasmid conjugation was attempted by mixing 100 μL of 

overnight culture of donor and recipient strains (rifampicin resistant Escherichia coli C600) 

on Luria-Bertani agar plates and incubating overnight at 26°C and 37°C. The plasmid was 

sequenced using the PacBio platform to gain long reads and a single improved draft 

assembly, which was aligned against P125109 plasmid pSENV (Accession Number 

HG970000). For novel regions of the plasmid from isolate D7795, genes were predicted 

using GLIMMER and manual annotations applied based on homology searches against the 

public databases, using both BLASTn and FASTA. The plasmid phylogeny was 

reconstructed using the same methodology as the chromosome; a maximum likelihood (ML) 

phylogenetic tree was built from the alignments of the isolates using RAxML (version 7.0.4) 

using a GTR+I+G model

Identification of AMR genes

A manually curated version of the Resfinder database was used to investigate the isolates for 

the presence of AMR genes57. To reduce redundancy, the database was clustered using CD-

HIT-EST58, with the alignment length of the shorter sequence required to be 90% the length 

of the longer sequence. All other options were left as the defaults. The representative gene of 

each cluster was then mapped with SMALT to the assemblies of each isolate to identify and 

matches with an identity of 90% or greater were considered significant, in line with the 

default clustering parameters of CD-HIT-EST. Where partial matches were identified at the 

ends of contigs, having an identity of 90% or greater to the matched region of the gene, 

potential AMR gene presence was recorded. To confirm presence of these partial matches, 

raw sequencing reads of the pertinent isolates were mapped using SMALT to these genes to 

check for 90% identity across the entire gene.

Biolog™ growth substrate platform profiling

The Biolog™ platform enables the simultaneous quantitative measurement of a number of 

cellular phenotypes, and therefore the creation of a phenotypic profile of a variety of assay 

conditions59. Incubation and recording of phenotypic data were performed using an 

OmniLog® plate reader.

In these experiments, two replicates of D7795 were compared to two replicates of a PT4 like 

strain at 28°C and 37°C to represent environmental and human temperatures. Biolog™ 

plates PM1-4 and 9 (Carbon source [PM1,PM2], nitrogen source [PM3] and phosphor and 
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sulphur source [PM4] metabolism and osmotic pressure [PM9]) were used. Each well was 

inoculated as described below, thereby testing 475 conditions at once (each plate has one 

negative control well).

The isolates were cultured overnight on LB-agar at 37°C in air to exclude contamination. 

Colonies were scraped off plates and dispensed into IF-0a solution (Biolog) to a cell density 

corresponding to 81% transmittance. For each plate used, 880 µL of this cell suspension was 

added to 10 mL IF-10b GP/GP solution (Biolog) and 120 µL dye mix G (Biolog). This was 

then supplemented with a 1 mL solution of 7.5 mM D-ribose (Sigma), 2 mM magnesium 

chloride, 1 mM calcium chloride, 2 mM sodium pyrophosphate (Sigma), 25 µM L-arginine 

(Sigma), 25 µM L-methionine (Sigma), 25 µM hypoxanthine (Sigma), 10 µM lipoamide 

(Sigma), 5 µM nicotine adenine dinucleotide (Sigma), 0.25 µM riboflavin (Sigma), 0.005% 

by mass yeast extract (Fluka) and 0.005% by mass Tween 80 (Sigma). 100µl of this mixture 

was dispensed into each well on the assay plate. Plates were then allowed to equilibrate in 

air for 5 min prior to being sealed in airtight bags and loaded into the Omnilog machine 

(Biolog). Plates were scanned every 15 min for 48 hours while incubated at 28°C and 37°C 

in air. Culture under anaerobic conditions was unavailable. Two paired replicates were 

performed for each of the two isolates.

After completion of the run, the signal data were compiled and analysed using the limma 

package in ‘R’ described previously60. A log-fold change of 0.5 controlling for a 5% false 

discovery rate was used as a cut-off for investigating a specific metabolite further using 

Pathway Tools61 and whether the metabolic change was related to pseudogenes and non 

synonymous(NS)-SNPs in genes in the respective genomes.

In vivo Infection Model

Two isolates were used in the animal models: S. Enteritidis P125109 and D7795. 

Unvaccinated commercial female egg-layer Lohmann Brown chicks (Domestic Fowl [Gallus 
gallus]) were obtained from a commercial hatchery and housed in secure floor pens at a 

temperature of 25°C. Eight chicks per strain per time point were inoculated by gavage at 10 

days (d) of age and received a dose of ~108 Salmonella colony forming units (CFU) in a 

volume of 0.2 mL. Subsequently, four to five birds from each group were humanely killed at 

3, 7 or 21 d post-infection (p.i.). At post mortem, the liver, spleen, and caecal contents were 

removed aseptically, homogenised, serially diluted and dispensed onto Brilliant Green agar 

(Oxoid) to quantify colony forming units (CFU) as described previously62. Statistical 

analysis was performed using SPSS, version 20 (IBM). Kruskal-Wallis was used to compare 

bacterial loads between infected groups.

All work was conducted in accordance with the UK legislation governing experimental 

animals, Animals (Scientific Procedures) Act 1986, under project licence 40/3652 and was 

approved by the University of Liverpool ethical review process prior to the award of the 

project license. The licensing procedure requires power calculations to determine minimal 

group sizes for each procedure to ensure results are significant. For these experiments a 

group size of 8 birds per time point was chosen, based on a variation in 1.0 log10 in bacterial 

count between groups as being significant along with prior experience of Salmonella 
infection studies. Groups were randomly selected on receipt from the hatchery and 
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investigators conducting animal experiments were not blinded, as the current UK code of 

practice requires all cages or pens to be fully labeled with experimental details. No animals 

were excluded from the analysis. All animals were checked a minimum of twice daily to 

ensure their health and welfare.

Code availability & URLs

Software is referenced and URLS are provided below. All software is open source.

BEAST: http://beast.bio.ed.ac.uk/

Biolog™: http://www.biolog.com

BLASTn: http://blast.ncbi.nlm.nih.gov

limma package: www.bioconductor.org

PacBio platform: http://www.pacificbiosciences.com/

Picard: https://broadinstitute.github.io/picard

‘R’: www.R-project.org

SMALT: www.sanger.ac.uk/science/tools/smalt-0

United Nations statistical divisions: www.unstats.un.org/unsd/methods/m49/m49regin.htm

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Maximum likelihood phylogeny of S. Enteritidis based on 675 isolates rooted to S. 

Gallinarum. There are 3 epidemic clades; 2 African epidemic clades and a global epidemic 

clade. Scale bar indicates nucleotide substitutions per site.
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Figure 2. 
Differences in accessory genomes of 4 major clades. Approximate position of prophages in 

chromosome is depicted, although prophages are not drawn to scale
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Figure 3. 
Heat map revealing changes in metabolic activity of Central/Eastern African clade isolate 

D7795 when compared to global epidemic isolate A1636 at 28 and 37°C. The figure also 

displays whether there are corresponding mutations in genes related to the affected 

metabolic pathway. (NSSNP=Non-synonymous single nucleotide polymorphism, HDG = 

Hypothetically disrupted gene)
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Figure 4. 
Salmonella isolation from a chick infection model demonstrates failure of Central/Eastern 

African clade isolate to invade chicken spleen (4A) and liver (4B) or to colonize chicken 

caeca (4C) at 7 days post infection (dpi) (n=24 at this time point) compared to the global 

epidemic clade. Numbers are expressed as colony forming units (CFU) per gram of tissue
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Table 2

Metadata summarised by clade

Major Clade/cluster Site of isolation N (%) Number (%) of 
antimicrobial resistance 

genes*

Human Invasive Human non-invasive Food/Animal/Environment Unknown 1-3 4-6 7-9

West African 61 (92) 1 (2) 0 (0) 4 (6) 22 (33) 9 (14) 35 (66)

Central/Eastern African 155 (93) 7 (4) 0 (0) 5 (3) 0 (0) 11 (7) 156 (93)

Global epidemic 94 (38) 95 (38) 31 (12) 30 (12) 243 (97) 7 (3) 0 (0)

Outlier cluster 51 (38) 36 (27) 27 (20) 20 (15) 128 (96) 3 (2) 3 (2)

*
All isolates contained cryptic aminoglycoside acetyltransferase gene aac(6’)-ly26
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