111 research outputs found

    Screening for cervical Cancer in high-risk populations: DNA pap test or hybrid capture II test alone?

    Get PDF
    This study was designed to evaluate whether Hybrid Capture II (HC2) test alone refer women to colposcopy as appropriately as DNA Papanicolaou (Pap) test, in the context of a high-risk group of women using the recently validated DNACitoliq LBC system. Women with suspected cervical disease were included in this crosssectional study at a tertiary center in São Paulo, Brazil, for further workup. All women had cervical material collected for LBC and HC2 for high-risk human papillomavirus (hrHPV)-DNA test. Irrespective of cytology and HC2 results, colposcopy, and cervical biopsy when applicable, was systematically performed. All tests were performed blindly. Sensitivity, specificity, positive and negative predictive values, and overall accuracy of both methods were computed in relation to histology. A total of 1,080 women were included: 36.4% (393/1080) had ACUS+, 10.2% (110/1080) were high-grade squamous intraepithelial lesions (HSIL) or cancer. Mean age was 33.5 years. All women underwent colposcopy, and cervical biopsies were performed in 38.4% (415/1080): 33% (137/415) of the biopsies were negative, 14.4% (155/415) were low-grade squamous intraepithelial lesions (LSIL), 10.7% (116/415) were HSIL, and 0.6% (7/415) were cancer. HC2 sensitivity to diagnose biopsy-proven HSIL was 100%. Because all HSIL cases had a positive HC2 test, sensitivity could not be improved by adding LBC. Specificity and positive and negative predictive values of DNA Pap were not significantly different from HC2 test alone when considering LSIL+ histology as ‘‘gold standard’’ and HSIL+ histology. As a screening strategy for women with high-risk for cervical cancer, DNA Pap test does not seem to add substantially to HC2 alone in terms of appropriately referring to colposcopy

    Hydroxychloroquine is associated with a lower risk of polyautoimmunity: data from the RELESSER Registry

    Get PDF
    OBJECTIVES: This article estimates the frequency of polyautoimmunity and associated factors in a large retrospective cohort of patients with SLE. METHODS: RELESSER (Spanish Society of Rheumatology Lupus Registry) is a nationwide multicentre, hospital-based registry of SLE patients. This is a cross-sectional study. The main variable was polyautoimmunity, which was defined as the co-occurrence of SLE and another autoimmune disease, such as autoimmune thyroiditis, RA, scleroderma, inflammatory myopathy and MCTD. We also recorded the presence of multiple autoimmune syndrome, secondary SS, secondary APS and a family history of autoimmune disease. Multiple logistic regression analysis was performed to investigate possible risk factors for polyautoimmunity. RESULTS: Of the 3679 patients who fulfilled the criteria for SLE, 502 (13.6%) had polyautoimmunity. The most frequent types were autoimmune thyroiditis (7.9%), other systemic autoimmune diseases (6.2%), secondary SS (14.1%) and secondary APS (13.7%). Multiple autoimmune syndrome accounted for 10.2% of all cases of polyautoimmunity. A family history was recorded in 11.8%. According to the multivariate analysis, the factors associated with polyautoimmunity were female sex [odds ratio (95% CI), 1.72 (1.07, 2.72)], RP [1.63 (1.29, 2.05)], interstitial lung disease [3.35 (1.84, 6.01)], Jaccoud arthropathy [1.92 (1.40, 2.63)], anti-Ro/SSA and/or anti-La/SSB autoantibodies [2.03 (1.55, 2.67)], anti-RNP antibodies [1.48 (1.16, 1.90)], MTX [1.67 (1.26, 2.18)] and antimalarial drugs [0.50 (0.38, 0.67)]. CONCLUSION: Patients with SLE frequently present polyautoimmunity. We observed clinical and analytical characteristics associated with polyautoimmunity. Our finding that antimalarial drugs protected against polyautoimmunity should be verified in future studies

    Consistent patterns of common species across tropical tree communities

    Get PDF
    D.L.M.C. was supported by the London Natural Environmental Research Council Doctoral Training Partnership grant (grant no. NE/L002485/1). This paper developed from analysing data from the African Tropical Rainforest Observatory Network (AfriTRON), curated at ForestPlots.net. AfriTRON has been supported by numerous people and grants since its inception. We sincerely thank the people of the many villages and local communities who welcomed our field teams and without whose support this work would not have been possible. Grants that have funded the AfriTRON network, including data in this paper, are a European Research Council Advanced Grant (T-FORCES; 291585; Tropical Forests in the Changing Earth System), a NERC standard grant (NER/A/S/2000/01002), a Royal Society University Research Fellowship to S.L.L., a NERC New Investigators Grant to S.L.L., a Philip Leverhulme Award to S.L.L., a European Union FP7 grant (GEOCARBON; 283080), Leverhulme Program grant (Valuing the Arc); a NERC Consortium Grant (TROBIT; NE/D005590/), NERC Large Grant (CongoPeat; NE/R016860/1) the Gordon and Betty Moore Foundation the David and Lucile Packard Foundation, the Centre for International Forestry Research (CIFOR), and Gabon’s National Parks Agency (ANPN). This paper was supported by ForestPlots.net approved Research Project 81, ‘Comparative Ecology of African Tropical Forests’. The development of ForestPlots.net and data curation has been funded by several grants, including NE/B503384/1, NE/N012542/1, ERC Advanced Grant 291585—‘T-FORCES’, NE/F005806/1, NERC New Investigators Awards, the Gordon and Betty Moore Foundation, a Royal Society University Research Fellowship and a Leverhulme Trust Research Fellowship. Fieldwork in the Democratic Republic of the Congo (Yangambi and Yoko sites) was funded by the Belgian Science Policy Office BELSPO (SD/AR/01A/COBIMFO, BR/132/A1/AFRIFORD, BR/143/A3/HERBAXYLAREDD, FED-tWIN2019-prf-075/CongoFORCE, EF/211/TREE4FLUX); by the Flemish Interuniversity Council VLIR-UOS (CD2018TEA459A103, FORMONCO II); by L’Académie de recherche et d’enseignement supérieur ARES (AFORCO project) and by the European Union through the FORETS project (Formation, Recherche, Environnement dans la TShopo) supported by the XIth European Development Fund. EMV was supported by fellowship from the CNPq (Grant 308543/2021-1). RAPELD plots in Brazil were supported by the Program for Biodiversity Research (PPBio) and the National Institute for Amazonian Biodiversity (INCT-CENBAM). BGL post-doc grant no. 2019/03379-4, São Paulo Research Foundation (FAPESP). D.A.C. was supported by the CCI Collaborative fund. Plots in Mato Grosso, Brazil, were supported by the National Council for Scientific and Technological Development (CNPq), PELD-TRAN 441244/2016-5 and 441572/2020-0, and Mato Grosso State Research Support Foundation (FAPEMAT)—0346321/2021. We thank E. Chezeaux, R. Condit, W. J. Eggeling, R. M. Ewers, O. J. Hardy, P. Jeanmart, K. L. Khoon, J. L. Lloyd, A. Marjokorpi, W. Marthy, H. Ntahobavuka, D. Paget, J. T. A. Proctor, R. P. Salomão, P. Saner, S. Tan, C. O. Webb, H. Woell and N. Zweifel for contributing forest inventory data. We thank numerous field assistants for their invaluable contributions to the collection of forest inventory data, including A. Nkwasibwe, ITFC field assistant.Peer reviewe

    Neurocognition and quality of life after reinitiating antiretroviral therapy in children randomized to planned treatment interruption

    Get PDF
    Objective: Understanding the effects of antiretroviral treatment (ART) interruption on neurocognition and quality of life (QoL) are important for managing unplanned interruptions and planned interruptions in HIV cure research. Design: Children previously randomized to continuous (continuous ART, n=41) vs. planned treatment interruption (PTI, n=47) in the Pediatric European Network for Treatment of AIDS (PENTA) 11 study were enrolled. At study end, PTI children resumed ART. At 1 and 2 years following study end, children were assessed by the coding, symbol search and digit span subtests of Wechsler Intelligence Scale for Children (6-16 years old) or Wechsler Adult Intelligence Scale ( 6517 years old) and by Pediatrics QoL questionnaires for physical and psychological QoL. Transformed scaled scores for neurocognition and mean standardized scores for QoL were compared between arms by t-test and Mann-Whitney U test, respectively. Scores indicating clinical concern were compared (<7 for neurocognition and <70 for QoL tests). Results: Characteristics were similar between arms with a median age of 12.6 years, CD4 + of 830 cells/\u3bcl and HIV RNA of 1.7 log 10 copies/ml. The median cumulative ART exposure was 9.6 in continuous ART vs. 7.7 years in PTI (P=0.02). PTI children had a median of 12 months off ART and had resumed ART for 25.2 months at time of first assessment. Neurocognitive scores were similar between arms for all tests. Physical and psychological QoL scores were no different. About 40% had low neurocognitive and QoL scores indicating clinical concern. Conclusion: No differences in information processing speed, sustained attention, short-term memory and QoL functioning were observed between children previously randomized to continuous ART vs. PTI in the PENTA 11 trial

    Local hydrological conditions influence tree diversity and composition across the Amazon basin

    Get PDF
    Tree diversity and composition in Amazonia are known to be strongly determined by the water supplied by precipitation. Nevertheless, within the same climatic regime, water availability is modulated by local topography and soil characteristics (hereafter referred to as local hydrological conditions), varying from saturated and poorly drained to well-drained and potentially dry areas. While these conditions may be expected to influence species distribution, the impacts of local hydrological conditions on tree diversity and composition remain poorly understood at the whole Amazon basin scale. Using a dataset of 443 1-ha non-flooded forest plots distributed across the basin, we investigate how local hydrological conditions influence 1) tree alpha diversity, 2) the community-weighted wood density mean (CWM-wd) – a proxy for hydraulic resistance and 3) tree species composition. We find that the effect of local hydrological conditions on tree diversity depends on climate, being more evident in wetter forests, where diversity increases towards locations with well-drained soils. CWM-wd increased towards better drained soils in Southern and Western Amazonia. Tree species composition changed along local soil hydrological gradients in Central-Eastern, Western and Southern Amazonia, and those changes were correlated with changes in the mean wood density of plots. Our results suggest that local hydrological gradients filter species, influencing the diversity and composition of Amazonian forests. Overall, this study shows that the effect of local hydrological conditions is pervasive, extending over wide Amazonian regions, and reinforces the importance of accounting for local topography and hydrology to better understand the likely response and resilience of forests to increased frequency of extreme climate events and rising temperatures

    Cardiovascular disease, chronic kidney disease, and diabetes mortality burden of cardiometabolic risk factors from 1980 to 2010: A comparative risk assessment

    Get PDF
    Background: High blood pressure, blood glucose, serum cholesterol, and BMI are risk factors for cardiovascular diseases and some of these factors also increase the risk of chronic kidney disease and diabetes. We estimated mortality from cardiovascular diseases, chronic kidney disease, and diabetes that was attributable to these four cardiometabolic risk factors for all countries and regions from 1980 to 2010. Methods: We used data for exposure to risk factors by country, age group, and sex from pooled analyses of population-based health surveys. We obtained relative risks for the effects of risk factors on cause-specific mortality from meta-analyses of large prospective studies. We calculated the population attributable fractions for each risk factor alone, and for the combination of all risk factors, accounting for multicausality and for mediation of the effects of BMI by the other three risks. We calculated attributable deaths by multiplying the cause-specific population attributable fractions by the number of disease-specific deaths. We obtained cause-specific mortality from the Global Burden of Diseases, Injuries, and Risk Factors 2010 Study. We propagated the uncertainties of all the inputs to the final estimates. Findings: In 2010, high blood pressure was the leading risk factor for deaths due to cardiovascular diseases, chronic kidney disease, and diabetes in every region, causing more than 40% of worldwide deaths from these diseases; high BMI and glucose were each responsible for about 15% of deaths, and high cholesterol for more than 10%. After accounting for multicausality, 63% (10·8 million deaths, 95% CI 10·1-11·5) of deaths from these diseases in 2010 were attributable to the combined effect of these four metabolic risk factors, compared with 67% (7·1 million deaths, 6·6-7·6) in 1980. The mortality burden of high BMI and glucose nearly doubled from 1980 to 2010. At the country level, age-standardised death rates from these diseases attributable to the combined effects of these four risk factors surpassed 925 deaths per 100 000 for men in Belarus, Kazakhstan, and Mongolia, but were less than 130 deaths per 100 000 for women and less than 200 for men in some high-income countries including Australia, Canada, France, Japan, the Netherlands, Singapore, South Korea, and Spain. Interpretation: The salient features of the cardiometabolic disease and risk factor epidemic at the beginning of the 21st century are high blood pressure and an increasing effect of obesity and diabetes. The mortality burden of cardiometabolic risk factors has shifted from high-income to low-income and middle-income countries. Lowering cardiometabolic risks through dietary, behavioural, and pharmacological interventions should be a part of the global response to non-communicable diseases. Funding: UK Medical Research Council, US National Institutes of Health. © 2014 Elsevier Ltd

    Geographic patterns of tree dispersal modes in Amazonia and their ecological correlates

    Get PDF
    Aim: To investigate the geographic patterns and ecological correlates in the geographic distribution of the most common tree dispersal modes in Amazonia (endozoochory, synzoochory, anemochory and hydrochory). We examined if the proportional abundance of these dispersal modes could be explained by the availability of dispersal agents (disperser-availability hypothesis) and/or the availability of resources for constructing zoochorous fruits (resource-availability hypothesis). Time period: Tree-inventory plots established between 1934 and 2019. Major taxa studied: Trees with a diameter at breast height (DBH) ≥ 9.55 cm. Location: Amazonia, here defined as the lowland rain forests of the Amazon River basin and the Guiana Shield. Methods: We assigned dispersal modes to a total of 5433 species and morphospecies within 1877 tree-inventory plots across terra-firme, seasonally flooded, and permanently flooded forests. We investigated geographic patterns in the proportional abundance of dispersal modes. We performed an abundance-weighted mean pairwise distance (MPD) test and fit generalized linear models (GLMs) to explain the geographic distribution of dispersal modes. Results: Anemochory was significantly, positively associated with mean annual wind speed, and hydrochory was significantly higher in flooded forests. Dispersal modes did not consistently show significant associations with the availability of resources for constructing zoochorous fruits. A lower dissimilarity in dispersal modes, resulting from a higher dominance of endozoochory, occurred in terra-firme forests (excluding podzols) compared to flooded forests. Main conclusions: The disperser-availability hypothesis was well supported for abiotic dispersal modes (anemochory and hydrochory). The availability of resources for constructing zoochorous fruits seems an unlikely explanation for the distribution of dispersal modes in Amazonia. The association between frugivores and the proportional abundance of zoochory requires further research, as tree recruitment not only depends on dispersal vectors but also on conditions that favour or limit seedling recruitment across forest types

    Geography and ecology shape the phylogenetic composition of Amazonian tree communities

    Get PDF
    Aim: Amazonia hosts more tree species from numerous evolutionary lineages, both young and ancient, than any other biogeographic region. Previous studies have shown that tree lineages colonized multiple edaphic environments and dispersed widely across Amazonia, leading to a hypothesis, which we test, that lineages should not be strongly associated with either geographic regions or edaphic forest types. Location: Amazonia. Taxon: Angiosperms (Magnoliids; Monocots; Eudicots). Methods: Data for the abundance of 5082 tree species in 1989 plots were combined with a mega-phylogeny. We applied evolutionary ordination to assess how phylogenetic composition varies across Amazonia. We used variation partitioning and Moran\u27s eigenvector maps (MEM) to test and quantify the separate and joint contributions of spatial and environmental variables to explain the phylogenetic composition of plots. We tested the indicator value of lineages for geographic regions and edaphic forest types and mapped associations onto the phylogeny. Results: In the terra firme and várzea forest types, the phylogenetic composition varies by geographic region, but the igapó and white-sand forest types retain a unique evolutionary signature regardless of region. Overall, we find that soil chemistry, climate and topography explain 24% of the variation in phylogenetic composition, with 79% of that variation being spatially structured (R2^{2} = 19% overall for combined spatial/environmental effects). The phylogenetic composition also shows substantial spatial patterns not related to the environmental variables we quantified (R2^{2} = 28%). A greater number of lineages were significant indicators of geographic regions than forest types. Main Conclusion: Numerous tree lineages, including some ancient ones (>66 Ma), show strong associations with geographic regions and edaphic forest types of Amazonia. This shows that specialization in specific edaphic environments has played a long-standing role in the evolutionary assembly of Amazonian forests. Furthermore, many lineages, even those that have dispersed across Amazonia, dominate within a specific region, likely because of phylogenetically conserved niches for environmental conditions that are prevalent within regions

    Mapping density, diversity and species-richness of the Amazon tree flora

    Get PDF
    Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness. Using only location, stratified by forest type, as predictor, our spatial model, to the best of our knowledge, provides the most accurate map of tree diversity in Amazonia to date, explaining approximately 70% of the tree diversity and species-richness. Large soil-forest combinations determine a significant percentage of the variation in tree species-richness and tree alpha-diversity in Amazonian forest-plots. We suggest that the size and fragmentation of these systems drive their large-scale diversity patterns and hence local diversity. A model not using location but cumulative water deficit, tree density, and temperature seasonality explains 47% of the tree species-richness in the terra-firme forest in Amazonia. Over large areas across Amazonia, residuals of this relationship are small and poorly spatially structured, suggesting that much of the residual variation may be local. The Guyana Shield area has consistently negative residuals, showing that this area has lower tree species-richness than expected by our models. We provide extensive plot meta-data, including tree density, tree alpha-diversity and tree species-richness results and gridded maps at 0.1-degree resolution

    Consistent patterns of common species across tropical tree communities

    Get PDF
    Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1,2,3,4,5,6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.Publisher PDFPeer reviewe
    corecore