32 research outputs found

    Monitoring Water Diversity and Water Quality with Remote Sensing and Traits

    Get PDF
    Changes and disturbances to water diversity and quality are complex and multi-scale in space and time. Although in situ methods provide detailed point information on the condition of water bodies, they are of limited use for making area-based monitoring over time, as aquatic ecosystems are extremely dynamic. Remote sensing (RS) provides methods and data for the cost-effective, comprehensive, continuous and standardised monitoring of characteristics and changes in characteristics of water diversity and water quality from local and regional scales to the scale of entire continents. In order to apply and better understand RS techniques and their derived spectral indicators in monitoring water diversity and quality, this study defines five characteristics of water diversity and quality that can be monitored using RS. These are the diversity of water traits, the diversity of water genesis, the structural diversity of water, the taxonomic diversity of water and the functional diversity of water. It is essential to record the diversity of water traits to derive the other four characteristics of water diversity from RS. Furthermore, traits are the only and most important interface between in situ and RS monitoring approaches. The monitoring of these five characteristics of water diversity and water quality using RS technologies is presented in detail and discussed using numerous examples. Finally, current and future developments are presented to advance monitoring using RS and the trait approach in modelling, prediction and assessment as a basis for successful monitoring and management strategies.This research received no external funding.Peer Reviewe

    Remote sensing of geomorphodiversity linked to biodiversity — part III: traits, processes and remote sensing characteristics

    Get PDF
    Remote sensing (RS) enables a cost-effective, extensive, continuous and standardized monitoring of traits and trait variations of geomorphology and its processes, from the local to the continental scale. To implement and better understand RS techniques and the spectral indicators derived from them in the monitoring of geomorphology, this paper presents a new perspective for the definition and recording of five characteristics of geomorphodiversity with RS, namely: geomorphic genesis diversity, geomorphic trait diversity, geomorphic structural diversity, geomorphic taxonomic diversity, and geomorphic functional diversity. In this respect, geomorphic trait diversity is the cornerstone and is essential for recording the other four characteristics using RS technologies. All five characteristics are discussed in detail in this paper and reinforced with numerous examples from various RS technologies. Methods for classifying the five characteristics of geomorphodiversity using RS, as well as the constraints of monitoring the diversity of geomorphology using RS, are discussed. RS-aided techniques that can be used for monitoring geomorphodiversity in regimes with changing land-use intensity are presented. Further, new approaches of geomorphic traits that enable the monitoring of geomorphodiversity through the valorisation of RS data from multiple missions are discussed as well as the ecosystem integrity approach. Likewise, the approach of monitoring the five characteristics of geomorphodiversity recording with RS is discussed, as are existing approaches for recording spectral geomorhic traits/ trait variation approach and indicators, along with approaches for assessing geomorphodiversity. It is shown that there is no comparable approach with which to define and record the five characteristics of geomorphodiversity using only RS data in the literature. Finally, the importance of the digitization process and the use of data science for research in the field of geomorphology in the 21st century is elucidated and discussed

    Late-stage diagnosis of HIV infection in Brazilian children: evidence from two national cohort studies

    Full text link
    This study analyzed data from two consecutive retrospective cohort samples (1983 to 1998 and 1999 to 2002) of Brazilian children with AIDS (N = 1,758) through mother-to-child-transmission. Late-stage diagnosis (CDC category C) was investigated in relation to the following variables: year of birth, year of HIV diagnosis, and time periods related to changes in government treatment guidelines. Late-stage diagnosis occurred in 731 (41.6%) of cases and was more prevalent in infants under 12 months of age. The rate of late-stage diagnosis decreased from 48% to 36% between the two periods studied. We also observed a reduction in the proportion of late-stage diagnoses and the time lapse between HIV diagnosis and ART initiation. A significant association was found between timely diagnosis and having been born in recent years (OR = 0.62; p = 0.009) and year of HIV diagnosis (OR = 0.72; p = 0.002/OR = 0.62; p < 0.001). Infants under the age of 12 months were more likely to be diagnosed at a late stage than older children (OR = 1.70; p = 0.004). Despite advances, there is a need to improve the effectiveness of policies and programs focused on improving early diagnosis and management of HIV/AIDS

    Atmospheric methane isotopes identify inventory knowledge gaps in the Surat Basin, Australia, coal seam gas and agricultural regions

    Get PDF
    In-flight measurements of atmospheric methane (CH4(a)) and mass balance flux quantification studies can assist with verification and improvement in the UNFCCC National Inventory reported CH4 emissions. In the Surat Basin gas fields, Queensland, Australia, coal seam gas (CSG) production and cattle farming are two of the major sources of CH4 emissions into the atmosphere. Because of the rapid mixing of adjacent plumes within the convective boundary layer, spatially attributing CH4(a) mole fraction readings to one or more emission sources is difficult. The primary aims of this study were to use the CH4(a) isotopic composition (13CCH4(a)) of in-flight atmospheric air (IFAA) samples to assess where the bottom-up (BU) inventory developed specifically for the region was well characterised and to identify gaps in the BU inventory (missing sources or over- and underestimated source categories). Secondary aims were to investigate whether IFAA samples collected downwind of predominantly similar inventory sources were useable for characterising the isotopic signature of CH4 sources (13CCH4(s)) and to identify mitigation opportunities. IFAA samples were collected between 100-350m above ground level (ma.g.l.) over a 2-week period in September 2018. For each IFAA sample the 2h back-trajectory footprint area was determined using the NOAA HYSPLIT atmospheric trajectory modelling application. IFAA samples were gathered into sets, where the 2h upwind BU inventory had >50% attributable to a single predominant CH4 source (CSG, grazing cattle, or cattle feedlots). Keeling models were globally fitted to these sets using multiple regression with shared parameters (background-air CH4(b) and 13CCH4(b)). For IFAA samples collected from 250-350ma.g.l. altitude, the best-fit 13CCH4(s) signatures compare well with the ground observation: CSG 13CCH4(s) of -55.4‰ (confidence interval (CI) 95%±13.7‰) versus 13CCH4(s) of -56.7‰ to -45.6‰; grazing cattle 13CCH4(s) of -60.5‰ (CI 95%±15.6‰) versus -61.7‰ to -57.5‰. For cattle feedlots, the derived 13CCH4(s) (-69.6‰, CI 95%±22.6‰), was isotopically lighter than the ground-based study (13CCH4(s) from -65.2‰ to -60.3‰) but within agreement given the large uncertainty for this source. For IFAA samples collected between 100-200ma.g.l. the 13CCH4(s) signature for the CSG set (-65.4‰, CI 95%±13.3‰) was isotopically lighter than expected, suggesting a BU inventory knowledge gap or the need to extend the population statistics for CSG 13CCH4(s) signatures. For the 100-200ma.g.l. set collected over grazing cattle districts the 13CCH4(s) signature (-53.8‰, CI 95%±17.4‰) was heavier than expected from the BU inventory. An isotopically light set had a low 13CCH4(s) signature of -80.2‰ (CI 95%±4.7‰). A CH4 source with this low 13CCH4(s) signature has not been incorporated into existing BU inventories for the region. Possible sources include termites and CSG brine ponds. If the excess emissions are from the brine ponds, they can potentially be mitigated. It is concluded that in-flight atmospheric 13CCH4(a) measurements used in conjunction with endmember mixing modelling of CH4 sources are powerful tools for BU inventory verification
    corecore