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A Canopy Height Profile (CHP) procedure presented in Harding et al. (2001) for large footprint LiDAR data
was tested in a closed canopy environment as a way of extracting vertical foliage profiles from LiDAR
raw-waveform. In this study, an adaptation of this method to small-footprint data has been shown, tested
and validated in an Australian sparse canopy forest at plot- and site-level. Further, the methodology itself
has been enhanced by implementing a dataset-adjusted reflectance ratio calculation according to
Armston et al. (2013) in the processing chain, and tested against a fixed ratio of 0.5 estimated for the laser
wavelength of 1550 nm. As a by-product of the methodology, effective leaf area index (LAIe) estimates
were derived and compared to hemispherical photography values. To assess the influence of LiDAR aggre-
gation area size on the estimates in a sparse canopy environment, LiDAR CHPs and LAIes were generated
by aggregating waveforms to plot- and site-level footprints (plot/site-aggregated) as well as in 5 m grids
(grid-processed). LiDAR profiles were then compared to field biomass profiles generated based on field
tree measurements. The correlation between field and LiDAR profiles was very high, with a mean R2 of
0.75 at plot-level and 0.86 at site-level for 55 plots and the corresponding 11 sites. Gridding had almost
no impact on the correlation between LiDAR and field profiles (only marginally improvement), nor did
the dataset-adjusted reflectance ratio. However, gridding and the dataset-adjusted reflectance ratio were
found to improve the correlation between raw-waveform LiDAR and hemispherical photography LAIe
estimates, yielding the highest correlations of 0.61 at plot-level and of 0.83 at site-level. This proved
the validity of the approach and superiority of dataset-adjusted reflectance ratio of Armston et al.
(2013) over a fixed ratio of 0.5 for LAIe estimation, as well as showed the adequacy of small-footprint
LiDAR data for LAIe estimation in discontinuous canopy forests.
� 2015 The Authors. Published by Elsevier B.V. on behalf of International Society for Photogrammetry and

Remote Sensing, Inc. (ISPRS). This is an open access article under the CC BY license (http://creativecom-
mons.org/licenses/by/4.0/).
1. Introduction

Vegetation plays a very important role on Earth, as through its
interaction with the atmosphere it is responsible for the exchange
of energy fluxes (Breda, 2003; Levy and Jarvis, 1999). The informa-
tion about its amount and spatial distribution is a key factor in
many environmental studies and applications (Zhao et al., 2011)
including flood modelling, fire risk assessment, carbon stock mod-
elling (Lefsky et al., 2005b; Koetz et al., 2006) and global environ-
mental change (Jonckheere et al., 2004). With the foliage
distribution variable in horizontal and vertical directions as well
as with time (seasonally and over years) (Breda, 2003), vegetation’s
complicated structure is very difficult to quantify and map in a
timely manner. Field inventories are time consuming, laborious,
expensive and not always accurate enough, often relying on
allometric equations or other ground-based indirect methods
while direct methods are highly destructive. Such field methods
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are therefore unsuitable for long-term monitoring of large areas
(Jonckheere et al., 2004) due to low frequency of sampling and high
costs. Remote sensing methods on the other hand, both airborne
and spaceborne, provide non-destructive and fast tools for obtain-
ing better and wider coverage and therefore they are particularly
useful for monitoring and inventories of vegetation at regional
and global scales.

The two parameters commonly used to describe vegetation
amount, derived from remote sensing observations are: normal-
ized difference vegetation index (NDVI) and leaf area index (LAI).
NDVI is a well-established passive optical remote sensing tech-
nique relying on the difference in vegetation’s reflectance in the
red and infrared parts of the electromagnetic spectrum. NDVI
and other optical remote sensing techniques provide no informa-
tion on the vertical distribution of the canopy, though, due to their
two-dimensional character (no elevation information) (Morsdorf
et al., 2006). They are therefore incapable of providing vertical foli-
age profiles. They are also sensitive to many factors such as e.g.
atmospheric and soil effects, and their accuracy depends on the
pixel size relation to the size of vegetation components (Riaño
et al., 2004). This method has also been reported to saturate at high
level vegetation biomass (Chen and Cihlar, 1996).

Leaf area index (LAI), defined as half the total leaf area per unit
ground area (Lang et al., 1991; Chen and Black, 1992), has also been
a widely studied parameter. Despite the simplicity of its definition,
it is still one of the most difficult parameters to measure (Breda,
2003; Richardson et al., 2009). The methods of obtaining LAI are
commonly divided into two groups: direct and indirect measure-
ments (Breda, 2003; Jonckheere et al., 2004; Levy and Jarvis,
1999; Chen et al., 1997). Extensive reviews of ground-based direct
and indirect methods of LAI retrievals with their advantages and
disadvantages are presented in Jonckheere et al. (2004) and
Breda (2003), with a background theory summary described in
Weiss et al. (2004).

1.1. Leaf area index

Remote sensing methods of LAI estimation fall into the indirect
measurements group, and as such are based on the Beer–Lambert
law and a statistical approach to canopy element distribution
within the crowns (Breda, 2003) that assumes that the foliage
material arrangement within the canopy is random. All indirect
remotely-sensed methods provide so-called effective LAI (LAIe)
estimates. This term was first proposed by Black et al. (1991) and
relates to the fact that in reality, the assumption of randomness
of foliage is often violated. This is particularly the case for conifer-
ous forests, where the clumping of canopy elements strongly
affects the retrievals of LAI. Furthermore, remotely-sensed meth-
ods do not distinguish leaf area from other canopy elements such
as stems or branches (Levy and Jarvis, 1999), thus providing plant
area index (PAI) rather than LAI. Methods for correcting both for
the clumping effect and for the contribution of woody elements
of the canopy have been developed and are described in the litera-
ture (Chen et al., 1991; Chen et al., 1997; Breda, 2003). Following
Jonckheere et al. (2004) who suggested the term effective LAI
(LAIe) as the most intuitive for retrievals that have not been cor-
rected for either of the above effects, in this study the LAIe term
will be used.

In recent years, remotely-sensed LAI has commonly been
derived from an active technique – LiDAR (Light Detection And
Ranging). LiDAR, due to its ability to penetrate through the canopy
gaps, offers the possibility to generate vertical profiles of three-di-
mensional vegetation structure. Therefore, not only the amount of
vegetation (biomass) can be quantified but also the vertical dis-
tribution of foliage and its changes with the height above ground
level can be described. Laser scanning has been tested for LAIe
estimation by many scientists using a range of platforms (terres-
trial, airborne and spaceborne). Most airborne small-footprint
LiDAR studies have used the discrete point frequency ratios to pre-
dict leaf area or vegetation cover (Solberg et al., 2006; Solberg
et al., 2009; Morsdorf et al., 2006; Riaño et al., 2004; White et al.,
2000; Jensen et al., 2008) although some have also used statistical
height metrics such as percentiles, variance, skewness, kurtosis etc.
(Jensen et al., 2008). The LAIe estimates from discrete return data
do however suffer from some shortcomings. By not accounting
for intensity and treating all pulses equally regardless of how much
light was returned and how much vegetation they therefore actu-
ally represent, they may lead to certain inaccuracies in the esti-
mates (e.g. overestimation of ground returns and thus
underestimation of LAIe). Relatively high thresholds used in the
pulse detection methods can cause some of the returns to be
missed and therefore bias the results, especially if vertical foliage
profiles are sought. Subsequently, some of the weak ground
returns may remain undetected, resulting in overestimation of
low value LAIe and saturation of LAIe at high values, especially
for small areas, when the Beer–Lambert theory is used
(Richardson et al., 2009).

The last decade has seen a rapid development in the commer-
cial small-footprint full-waveform laser scanner sector, making
those instruments easily available and of widespread use. Such
instruments offer additional benefits (e.g. denser vertical sampling,
estimates of width, amplitude and backscatter cross-section of the
pulses etc.) over point clouds generated by conventional discrete
return laser systems (Mallet and Bretar, 2009). They may help
overcome some of the drawbacks of discrete systems by utilising
the raw light curve of the returned energy or allowing a custom
decomposition procedure better suited to vegetation analysis.
Several studies have investigated the usefulness of full-waveform
LiDAR data for vegetation description using ground-based LiDAR
systems (Hopkinson et al., 2013; Zhao et al., 2011; Zhao et al.,
2012; Yao et al., 2011; Zheng and Moskal, 2012; Lovell et al.,
2003; Hosoi et al., 2010), airborne platforms (Tang et al., 2012;
Harding et al., 2001; Lindberg et al., 2012; Lefsky et al., 1999;
Sun and Ranson, 2000; Lefsky et al., 2005b; Morsdorf et al., 2009;
Armston et al., 2013; Calders et al., 2012; Hopkinson et al., 2013;
Lovell et al., 2003; Hosoi et al., 2010; Ni-Meister et al., 2010) and
spaceborne platforms (Miller et al., 2011; Lefsky et al., 2005a).
Although ground-based systems provide very detailed information
about the vegetation structure, their use, as in the case of any other
ground method, is limited to small areas. They therefore provide an
excellent source of information for calibration of the airborne and
spaceborne LiDAR methods, which are more suitable for larger
scale mapping.

With small-footprint waveform LiDAR data becoming increas-
ingly popular, it seems natural to explore their potential. Small-
footprint full-waveform LiDAR data, when used for LAIe estimation
with the Beer–Lambert law, will suffer from similar saturation lim-
itations as discrete data (Richardson et al., 2009), but possibly to a
lesser extent. A custom decomposition procedure focused on
detecting weak pulses will help reduce the possibility of missed
ground returns, which is further minimized by using the raw-
waveform rather than decomposed points. Nevertheless, as a result
of the smaller beam cross-section (in comparison to large-footprint
systems), not all of the small-footprint returned waveforms will
include light which has reached the ground level, as some of them
will be fully intercepted by vegetation. Therefore, aggregation into
larger grids or discs is necessary. The main constraint dictating the
size of grids for aggregated waveforms for LAIe calculation is the
laser pulse density. The choice of grid size will also be a function
of heterogeneity of the test area. For discontinuous or sparse cano-
pies, large-footprint laser data (such as SLICER or LVIS) will most
likely underestimate LAIe, whereas small-footprint data with
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optimal grid size (adjusted to crown widths) may be able to cap-
ture in-between crown gaps and provide a more realistic estimate
of LAI. Small-footprint full-waveform LiDAR may therefore be par-
ticularly suited for sparse canopies with a large variety of between-
crown gaps.

1.2. Vertical foliage profiles

The vertical variation of foliage (or of leaf area) is often called
foliage or canopy height profile (Aber, 1979; Lefsky et al., 1999;
Harding et al., 2001; MacArthur and Horn, 1969). There are two
groups of ground methods for foliage height profiles estimation:
a destructive stratified clipping (Lefsky, 1997) and non-destructive
point-quadrat sampling (Wilson, 1959; Wilson, 1965). Wilson’s
point-quadrat method employing a number of lines passing
through the canopy and recording the points of intersection with
leaves was modified by MacArthur and Horn (1969) to use an
upward pointing camera with a range finding photo lens to deter-
mine the location of the first intersecting leaf (optical point-quad-
rat method). Assuming a random distribution of leaves these data
at the lowest leaf level could then be transformed into vertical dis-
tribution. This procedure was further tested by Aber (1979) and
was found to provide a foliage height profile consistent with those
of standard point-quadrat method.

The MacArthur and Horn’s (1969) foliage height profile metho-
dology was subsequently adapted for use with LiDAR remote sens-
ing as canopy height profiles (CHP) by Lefsky (1997) and further
modified by other authors (Harding et al., 2001; Lefsky et al.,
1999). Studies of vertical vegetation structure were mostly carried
out with large-footprint full-waveform instruments. The algo-
rithms were developed for NASA’s airborne platforms such as
SLICER (Harding et al., 2001; Lefsky et al., 1999) and LVIS instru-
ments (Tang et al., 2012; Ni-Meister et al., 2010). Lefsky et al.
(1999) presented a three-dimensional volume method of descrip-
tion of the canopy (Canopy Volume Method-CVM), summarizing
the total volume and spatial organization of filled and empty space
within the canopy. Harding et al.’s (2001) SLICER canopy height
profile (CHP) procedure was found to reliably represent the vertical
structure of a closed canopy and be closely related to the ground-
based measurements in the stands tested in that study.

1.3. Related work and contributions

For small-footprint full-waveform airborne systems Lindberg
et al. (2012) presented a methodology that used raw LiDAR wave-
forms to derive vegetation volume profiles and found the lowest
RMSE and ‘good correspondence’ between field–derived and nor-
malized waveform profiles, compared to three other methods
tested. The study of Armston et al. (2013) focused on derivation
of gap fraction and vegetation – ground reflectance ratio, which
are the first step to LAIe estimation. However, in that particular
study the waveforms were reconstructed from decomposition
parameters due to lack of raw data, so the results are sensitive to
the characteristics of the decomposition algorithm. A limited val-
idation of this reconstruction with raw light curves was provided
for a subset of data, proving good agreement. Chen et al. (2014)
further tested the methodology of gap fraction estimation pro-
posed by Armston et al. (2013) showing that the method is stable
for different off-nadir scan angles, slopes of up to 26�, different
acquisitions and different LiDAR systems. They also compared
the derived LiDAR canopy gap fraction to gap fraction estimated
from hemispherical photography achieving a Pearson correlation
coefficient of 0.91.

Harding et al.’s (2001) SLICER CHP methodology was adapted
to small-footprint LiDAR data by Fieber et al. (2013b) where pre-
liminary results of LAIe validation (one of the stages of the
procedure) against hemispherical photos in four sites were pre-
sented. The validation of CHP procedure from small-footprint data
was also carried out at single-tree-level (Fieber et al., 2014) reach-
ing R2 of 0.86 for the LiDAR CHP of six combined swaths over a
dead Callitris glaucophylla tree against field tree profile generated
from convergent photographs. The raw waveform LAIe estimates
in that study were found to be within ±5% of the hemispherical
photography value.

This article is focused on validation of CHP methodology from
small-footprint full-waveform LiDAR at plot- and site-level both
for LAIe estimates as well as for vertical foliage profiles in a discon-
tinuous canopy environment, which to the best of the author’s
knowledge has not yet been done. Further, the CHP procedure is
enhanced by inclusion of the Armston et al. (2013) algorithm to
determine dataset-adjusted vegetation-ground reflectance ratio.
The results of CHP methodology with this ratio are then compared
to the result of this same procedure using a fixed ratio of 0.5 (esti-
mated for a laser wavelength of 1550 nm). Finally, the high res-
olution of the laser data offers the possibility to investigate LAIe
and CHPs at different spatial scales, which is particularly important
in a discontinuous canopy forest environment where the assump-
tion of randomness of foliage distribution can be violated. In this
paper, to test the impact of the size of aggregation area on LiDAR
estimates, the data were aggregated into 5 m, plot-size (30 m
diameter) and site-size (100 m diameter) cells.

The validation has been performed with the use of field tree
measurements that have been converted into vertical field biomass
profiles (for CHP) as well as based on hemispherical photography
(for LAIe). Hemispherical photographs, also called hemi-photos
(wide-angle field of view), provide a permanent record of the sky
obstructions at the time of the shot. This method has been widely
tested and used for the purpose of retrieving leaf area index (Chen
et al., 1991; Macfarlane et al., 2007; Levy and Jarvis, 1999) and is
now, with high resolution digital cameras easily available, a well-
established technique for obtaining this index (Zhao et al., 2012).
It has been previously used as a validation tool for other remote
sensing methods, in particular for LiDAR LAIe retrievals (Zhao
et al., 2012; Zhao et al., 2011; Richardson et al., 2009; Riaño
et al., 2004; Morsdorf et al., 2006; Solberg et al., 2006) and so
has been in this study.
2. Study area and data

The data used in this study were acquired as part of the Soil
Moisture Active Passive Experiment 3 (SMAPEx-3) carried out in
Australia in September 2011 (Panciera et al., 2013; Monerris
et al., 2011). The study area, Gillenbah forest, is situated South of
the town of Narrandera, between 447,548 m and 457,016 m
(Easting) and 6,143,546 m and 6,149,810 m (Northing) (UTM, zone
55 H). The forest is about 3300 ha in area with White Cypress pine
(C. glaucophylla) as the dominant species (90%), and the occasional
Grey Box (Eucalyptus microcarpa) (10%). It is a forest with relatively
discontinuous and varying canopy cover.
2.1. Field data

Twelve sites with different canopy cover were selected within
the Gillenbah forest (Fig. 1). Each site consisted of five 500 m2 plots
located in the center and in each cardinal direction (Fig. 1, inset).
All trees with a diameter larger than 5 cm were measured in the
field, whereas the remaining trees were counted with their average
height noted. The measurements included tree height (clinometer),
crown base height (clinometer), circumference at breast height
(tape), coordinates (GPS) and species. Upward-pointing hemi-
spherical photographs were taken at each plot during the field



Fig. 1. Advanced Land Imager (ALI) image of Gillenbah forest study area with the
twelve study sites locations overlaid. Note: Site markers are not to scale. Site design
showing the layout of the plots is given in the inset (image: courtesy of Dr. Mihai
Tanase).
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survey, with a Nikon D40 camera mounted on a levelled tripod
approximately 50–100 cm above ground level and a Sigma
4.5 mm fish-eye lens. Five hemispherical photographs, located at
the center (C) and at each cardinal direction (N, E, S, W) were
acquired at each plot. Although trees in twelve sites were mea-
sured in the field, the measurements in Site 1 were found to be
incomplete. This site lacked cardinal direction hemispherical pho-
tographs as well as 70% of crown base height measurements. That
in combination with the low number of trees and lack of under-
story made it impossible to generate a reliable and good quality
field biomass profile or representative LAIe estimates for compar-
ison with LiDAR values. Therefore Site 1 had to be excluded from
the analysis and will not be discussed further.
Fig. 2. An example of a hemispherical photograph.
2.2. LiDAR data

The full-waveform LiDAR data that were available for this study
were acquired on 6th September 2011 with a Riegl LMS Q560 scan-
ner. The laser instrument was mounted on a light aircraft and
flown at 350 m above ground level (AGL) resulting in 0.18 m foot-
print diameter. The average laser shot spacing was 9 points/m2

with an average detected point density of 19 points/m2 (after
decomposition). Both transmitted and received waveforms were
recorded with a frequency of 1 GHz (1 ns spacing). The LiDAR data
corresponding to field measurements at plot-level (within a cylin-
der of 15 m radius to cover the crowns of the trees at the edge of
the plot) and site-level (within a cylinder of 50 m radius from
the center of the central plot to cover the crowns of the trees at
the edge of the site) were extracted from the swaths of data for
each of the eleven sites. Despite large overlap between the LiDAR
swaths which were acquired in a criss-cross pattern, only one
swath per site was selected and used for the Canopy Height
Profile (CHP) analysis. The extraction from the instrument was car-
ried out using the GeoCodeWF commercial software and then the
data were decomposed using custom Gaussian decomposition with
a Trust-Region-Reflective optimisation algorithm (according to
Fieber et al. (2013a)). Decomposed data of single-peak ground
returns (identified with the help of backscattering coefficient) were
subsequently used to generate Digital Terrain Models (DTM) for
each of the sites.
2.3. Hemispherical photography LAIe

Upward-pointing hemispherical photographs (Fig. 2) were pro-
cessed using HemiView software, a popular tool for estimating gap
fraction and leaf area index (Riaño et al., 2004; Richardson et al.,
2009; Solberg et al., 2006; Zhao et al., 2011). HemiView computes
the fraction of sky obscured by vegetation in sky sectors, and turns
it into leaf area estimates defined as half of the total leaf area per
unit ground area. LAIe estimates were obtained for each of the five
photographs taken at each plot. Plot-level estimates were, how-
ever, computed as the mean of four photographs taken at cardinal
directions disregarding the central photograph. This was done due
to considerable overlap between the central photograph and pho-
tographs at cardinal directions and due to the discontinuous char-
acter of the Gillenbah forest canopy. While in a dense forest adding
the central photograph to the average would not have much
impact on that average, because of discontinuous character of the
site it would have somewhat biased the results toward the center
of the plot. For the same reason, the central plot in site 38 had to be
excluded from the plot level LAIe analysis, reducing the number of
plots from 55 to 54. The central plot of site 38 had only one hemi-
spherical photo taken in the field (no cardinal direction photos),
which would not be representative of the whole plot. The site-level
LAIe was computed as an average of the plot-level LAIe measure-
ments in each of the eleven sites (Site 38 was included in the
site-level analysis).

The clumping effect of canopy elements was neglected.
Therefore the presented values of leaf area index represent a so-
called effective leaf area index (LAIe). To obtain a value of true
LAI, the LAIe would have to be multiplied by a clumping index
specific to this study area and to the tree species. A final remark
has to be made: the acquired photographs were not ideal, as being
taken during the field work throughout the day, some of them had
the sun present in the frame making the selection of threshold for
LAIe calculation quite difficult and introducing some errors in the
estimates. These photographs were nevertheless the only available
for the measured sites.
2.4. Field biomass profiles

The tree parameter data collected during the field campaign
were used to estimate leaf, branch, stem (biomass of tree trunk
up to crown base height), stemwood (total tree stem biomass) as
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well as total above-ground biomass (in kg) for each measured tree
within plot limits, and at plot- and site-level (in tons/ha). These
estimates were calculated based on species-specific allometric
equations (Burrows et al. (2001), Hamilton et al. (2005)) developed
for a different study area. For C. glaucophylla two different allomet-
ric equations were considered: one based on diameter at breast
height (DBH) and one based on height. The available equations
for that species were developed for the South-central Queensland
region (1000 km North of Gillenbah the study area) which is char-
acterised by considerably higher annual average precipitation
(600 mm). Since these models consistently overestimated tree
heights for the Gillenbah forest study area when based on DBH,
the biomass values obtained from DBH- and height-based allomet-
ric equations were averaged. Due to the lack of specific equations
for E. microcarpa, the tree crowns being difficult to describe by a
single geometric shape, and the small number of those trees (only
7.3% of measured trees) in the study site, the same equations were
used for both species.

The biomass estimates for each tree were subsequently used to
generate field vertical biomass profiles, with 15 cm bin vertical res-
olution at plot- and site-level, in order to facilitate the validation of
LiDAR-based CHPs. The biomass was distributed across the tree
height, weighted according to the volume of a composite truncated
cone (Fig. 3). First, stem circumference at 0.3 m above ground level
(xa) was calculated from the Burrows et al. (2001) allometric equa-
tions based on measured circumference at 1.3 m (yb): yb = -
�1.691 + 0.895xa[m]. Circumferences were then converted into
diameters at 0.3 m (d(0.3 m)) and at 1.3 m (d(1.3 m) = DBH) and
used to compute stem diameter at crown base height (d(CBH))
based on geometric proportions assuming a trapezium cross-sec-
tion of the tree stem. If crown base height (CBH) was not measured
in the field, breast height (1.3 m) was used in its place. Based on
analysis of a few terrestrial photographs the stem diameter at
the top of the tree was assumed to be 20% of DBH.

Crown base height and tree height were then assigned to their
closest 0.15 m height bin. Knowing their diameters and the
Fig. 3. Schematic diagram of weighting system applied to generate field biomass
profiles.
number of bins between them, the volumes of decreasing diameter
truncated cones representing each 15 cm bin were calculated. They
were then normalized by the total volume of the cones covering
the crown region and used as weight to distribute leaf biomass
across the crown depth. A similar procedure was used for stem bio-
mass distribution across stem height, but using a cylinder (from 0
to 0.3 m) and truncated cone volumes calculated based on diame-
ters at 0.3, DBH and CBH, respectively. For dead trees, stemwood
biomass was distributed across the entire height of the tree sum-
ming the total volume along the tree height. Small (DBH < 5 cm)
trees, were modelled in the same way as live measured trees but
at plot-level rather than single-tree-level. Finally, the biomass of
all the single trees modelled within each plot/site, and the
corresponding plot/site-level model of small trees were aggregated
in 15 cm bins to yield vertical profiles of field biomass.
3. Methods

The raw-waveform LiDAR methodology used in this study is
based on the SLICER Canopy Height Profile processing presented
in Harding et al. (2001). This methodology, originally applied to
large-footprint data over a closed canopy environment, was
adapted to small-footprint LiDAR and initially tested by Fieber
et al. (2013b) at plot- and site-level in four forest sites for LAIe esti-
mates (one of the stages of the procedure), in a comparative study
of discrete point LAIe extraction methods. The technique was also
tested for LAIe and vertical profile generation, however, only at sin-
gle-tree-level (Fieber et al., 2014) with a very promising result (R2

of 0.86 with field profile). Here, the validation of LAIe and vertical
foliage profiles (CHPs) was performed at plot- and site-level using
11 field-measured sites in the discontinuous canopy cover of
Gillenbah forest. The methodology was also enhanced by using
the dataset-adjusted vegetation-ground reflectance ratio proposed
by Armston et al. (2013) (WF1) and compared to the results of the
procedure with a constant ratio of 0.5 (WF2) for the laser wave-
length 1550 nm. The LAIe estimates were then compared to hemi-
spherical photography derived values, and the vertical foliage
profiles were compared to field biomass profiles.

To assess the quality of the results, ordinary least square regres-
sion analysis was carried out, and root mean squared error was cal-
culated for each LiDAR LAIe comparison. Furthermore, a set of
paired two-tailed t-tests (at the 5% significance level) of the null
hypothesis that the differences between LiDAR and hemi-photo
estimates were a random sample from a normal distribution with
mean 0, against the alternative that the mean is not 0 were per-
formed. Similarly to the LAIe analysis, for vertical foliage profiles
a bin-wise ordinary least squares regression was undertaken, and
root mean squared error calculated. Furthermore, a set of paired
bin-wise two-tailed t-tests was carried out in order to assess
whether the LiDAR profiles were significantly different from
field-biomass profiles. T-tests were also performed between CHPs
extracted using different vegetation ratios and between plot/site-
aggregated and grid-processed CHPs.
3.1. Aggregation area

In comparison to large-footprint laser scanning data, small-
footprint laser waveforms do not always have a ground return.
Lack of a ground return in a waveform means that gap fraction can-
not be estimated for it. Such a waveform therefore cannot be used
in the processing on its own and has to be aggregated with others
in a larger area. The selection of the aggregation cell size was thor-
oughly discussed in Richardson et al. (2009) and depends mostly
on pulse density, sensitivity of the detection algorithm to weak
returns, and site heterogeneity. For discontinuous canopies as in
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the case of this study, aggregating data into plot- or site-size foot-
prints was not ideal. When large between-canopy gaps are present
in the aggregation cell, the leaf area will be computed for larger
ground extents than the vegetation actually occupies. This will
make the probability of pulses reaching the ground rise and in con-
sequence, following the logarithmic transform, the LAIe of the
examined area can be severely underestimated. The LAIe estima-
tion based on gap fraction assumes the vegetation to be randomly
distributed. In the case of the heavily clumped discontinuous cano-
pies of this study area, aggregating the data into plot- or site-level
cells will heavily violate the randomness assumption. Therefore, a
cell of 5 m by 5 m was chosen at both plot- and site-level, to reduce
the impact of clumped canopy on LAIe estimates, these are referred
to as the grid-processed datasets.

Due to the circular nature of the plots and sites, the LAIe and
CHP in every grid cell needed to be weighted proportionally to
the area that the data covered in that cell – the cells on the edges
of the plot/site were not fully covered by LiDAR (Fig. 4). A mean
LAIe per plot/site was then calculated as a sum of weighted grid
LAIe values in that plot/site divided by the sum of weights. In the
rare situation of LAIe saturation within a grid cell due to a lack of
ground returns, the maximum weighted grid LAIe value found in
the particular plot/site was used as an approximation. That maxi-
mum grid LAIe value was then weighted by the area (weight) of
the cell that has saturated and assigned to it. This was done to
avoid removing saturated cells from the datasets and biasing the
LAIe estimate. Another possible solution could have been used
here. As proposed by Richardson et al. (2009) a number of ground
returns within that cell could be artificially set to 1 for saturated
cells. This procedure is easy to implement when LAIe is calculated
from discrete returns. However, when waveform data are used, an
artificial ground waveform would have to be used, which is not
easily implemented due to energy variation between the laser
shots. In the case of vertical foliage profiles, saturated cells had
to be excluded from the profile generation (together with the
weight assigned to the cell) in order to avoid distortion of the pro-
file. The estimates of LAIe and CHP calculated in a 5 m by 5 m grid
(referred to as grid-processed and denoted with letter ‘g’ e.g.
WF1g) were compared to the estimates performed on the whole
non-gridded datasets of plot and site radii (referred to as plot/
site-aggregated), to see the impact of the aggregation area on
LAIe and CHP retrieval from LiDAR data in discrete canopy
environment.
Fig. 4. Example of 15 m-radius plot-level (left) and 50 m-radius site-level (right) LAIe ma
covered by the cell in order to enable calculation of weighted average plot- and site-level
referred to the web version of this article.)
3.2. Canopy Height Profile methodology

Canopy Height Profile (CHP) represents the relative vertical dis-
tribution of canopy surface area (vertical vegetation profile), and
accounts for occlusion of the laser energy by the canopy. The
CHP procedure is performed in several stages on raw-waveform
data. The advantage of the waveform method over point methods
(when points are sourced from full-waveform data) is that it does
not require the full decomposition with optimisation procedure or
calibration of the data. The knowledge about the approximate posi-
tion of the first and the last pulse within the waveform obtained
after the initialisation step of decomposition is sufficient, which
is much less time-consuming and requires much less processing
power than full decomposition. There is a need for DTM informa-
tion though, but if the full decomposition is not performed, the
DTM can also be derived from other sources of data or approxi-
mated from the initialisation step.
3.2.1. Waveform alignment
First, raw waveforms within the chosen aggregation area are

aligned according to their elevation above ground level. This is
carried out with the use of an existing DTM (generated based
on single-peak ground returns) and the location of the first pulse.
Due to the 1 ns sampling of the LiDAR system used, the vertical
location of the first pulse in a waveform is associated with a
15 cm height bin. At this stage noise within the data is subtracted
(estimate from the decomposition procedure or amplitude of the
last waveform bin).
3.2.2. Returned energy profile
Once the waveforms are aligned, a returned energy profile is

generated (Fig. 5A). The area underneath each waveform is calcu-
lated as a set of trapeziums: the average of each pair of consecutive
amplitudes multiplied by the 0.15 m height change represented by
each bin. The bin area values are then added up and averaged
across the aggregation dataset (grid/plot/site) to form one return
energy profile. In this profile the separation between ground and
vegetation part of the profile is found as a local minimum, sought
going upwards from the ground level within a pre-set number of
bins. Finally the ground part of the profile is corrected for the veg-
etation-ground reflectance difference using either a fixed or data-
set-adjusted ratio (discussed in Section 3.3).
ps with 5 m grid cell size. The LAIe LiDAR values in each cell are weighted by the area
LAIes. (For interpretation of the references to color in this figure legend, the reader is



Fig. 5. Example of CHP processing stages for Site 10: (A) returned energy profile; (B) canopy closure profile; (C) cumulative leaf/plant area index profile; and (D) canopy
height profile. Red line represents the beginning of ground return. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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3.2.3. Canopy closure profile
Canopy closure profile is computed by cumulatively adding up

the bin values in the energy profile from the top of vegetation until
the beginning of ground return and by normalizing it by the total
cumulative energy including ground return (Fig. 5B).

3.2.4. Effective leaf area profile and index
To correct for the effect of occlusion the canopy closure profile

is transformed to cumulative leaf (plant) area index profile
(Fig. 5C). The last vegetation bin value is treated as the total LAIe
for the dataset and used in comparisons with hemi-photos. The fol-
lowing transformation is applied:

LAIe ¼ � lnð1� closureÞ ð1Þ
3.2.5. Canopy height profile
Finally, the canopy height profile is generated by turning the

leaf area profile into an incremental distribution and normalizing
it by the total value of leaf area index (Fig. 5D). In the case of
grid-processed datasets the aggregation of cells is performed prior
to normalization of the profile.

3.3. Dataset-adjusted reflectance ratio

Due to the difference in reflectance between the vegetation and
the ground at the laser wavelengths (ground being approximately
twice as reflective as vegetation), the value of bins corresponding
to the ground in the energy profile had to be adjusted. Ni-
Meister et al. (2010) proposed calculating the reflectance ratio
using two neighbouring footprints, as the difference of their
accumulated vegetation returns over the difference of their ground
returns. This calculation was done with the assumption of constant
reflectance ratio of neighbouring footprints. The method was
applied to large-footprint LVIS data (�20 m). In the case of small-
footprint LiDAR data such as that considered here, the problem
in using this method is that the waveforms may not always have
a ground return and a larger sample would be necessary to be
representative of the area. Armston et al. (2013) proposed account-
ing for the reflectance difference between canopy (qv ) and ground
(qg) for small-footprint laser data using

qv
qg
¼ � Rv

Rg � Joqg
ð2Þ

where Rv is integrated vegetation return, Rg integrated ground
return and Jo is the transmitted pulse energy corrected for transmis-
sion losses. The Joqg term can be estimated as the mean integral of
single-peak ground returns, assuming that qg is constant and the
mean converges to a normal distribution (Armston et al. (2013).
The dataset-adjusted reflectance ratio was calculated at plot- and
site-level as well as within each 5 m by 5 m grid. In cases where
the ratio could not be calculated within certain grid cells due to
small sample size, the corresponding mean plot-level reflectance
ratio was used.



Table 2
Summary of plot-level methods acronyms used with their description.

Method Reflectance ratio Aggregation Data used

WF1O Adjusted Aggregated 50 m radius cylinder
WF1A Adjusted Aggregated Plot average
WF2O Fixed Aggregated 50 m radius cylinder
WF2A Fixed Aggregated Plot average
WF1gO Adjusted Gridded 50 m radius cylinder
WF1gA Adjusted Gridded Plot average
WF2gO Fixed Gridded 50 m radius cylinder
WF2gA Fixed Gridded Plot average
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4. Results and discussion

The dataset-adjusted reflectance ratio, based on Armston et al.
(2013), used in CHP methodology, was calculated at plot-, site-
and grid-level. The mean value for all plots yielded a ratio of
0.60, with a minimum of 0.44, maximum of 0.74, standard devia-
tion of 0.06, and standard error of the mean (SEM) of 0.008. The
site-level reflectance ratio was calculated for the site-aggregated
datasets with a center at the center of central plot and radius of
50 m. The mean of the site-level reflectance ratio of all sites also
yielded 0.60 with minimum of 0.50, maximum of 0.67, standard
deviation of 0.06, and SEM of 0.016. Fig. 6 presents the relationship
between the integrated vegetation and ground returns Rv and Rg

calculated from site-level data in 5 m grids. This plot shows a linear
relationship between those integrals and confirms that the
assumption of constant vegetation and ground reflectance relation
is valid for this study site.
4.1. LAI validation

The LiDAR LAIe values at plot- and site-level, derived as one of
the stages of the CHP procedure for the plot/site-aggregated and
grid-processed datasets, were compared to the hemispherical pho-
tography-derived LAIe. The analysis was carried out for 54 plots
and 11 sites. For clarity, Tables 1 and 2 summarize the acronyms
of the methods used at plot and site-level, respectively.
4.1.1. Plot-level
Fig. 7 presents absolute differences between LiDAR and hemi-

spherical photography-derived LAIe depending on the aggregation
Fig. 6. Relationship between Rv and Rg for grid-processed site-level datasets.

Table 1
Summary of plot-level methods acronyms used with their description.

Method Reflectance ratio Aggregation

WF1 Adjusted Aggregated (15 m radius cylinder)
WF2 Fixed Aggregated (15 m radius cylinder)
WF1g Adjusted Gridded (5 m grid)
WF2g Fixed Gridded (5 m grid)
method and reflectance ratio, while Fig. 8 shows regression results
between them. In general, all variants of the method provided esti-
mates quite close to those of hemi-photos, however, there was a
small tendency for very low hemispherical LAIes to be over-
estimated whereas for higher hemi-photo LAIes LiDAR showed
some degree of underestimation. In plot-aggregated datasets, tech-
nique WF1 (with plot-adjusted reflectance ratio) provided lower
estimates than WF2 (with a constant ratio), whose mean was clo-
ser to that of hemispherical photography. In the grid-processed
datasets the patterns were very similar to those in plot-aggregated
datasets. In discontinuous discrete canopies it is expected that
grid-processed LAIe values should be higher compared to plot-ag-
gregated estimates. This is due to the fact that as the LAIe is a loga-
rithmic function of canopy penetration probability, and it is
sensitive to cell heterogeneity; as cell area becomes smaller it con-
tains more homogenous vegetation and data. Therefore when the
average LAIe value of the whole plot area is calculated, the lack
of canopy continuity (sparseness of the canopy) is taken into
account, producing a more accurate plot average. Both grid-pro-
cessed variants of the method provided higher LAIe estimates in
comparison to plot-aggregated datasets, making the estimates
even closer to those of hemi-photo values, with WF2g having a
mean LAIe value almost the same as that of the hemispherical
photography.

Looking at Fig. 8 one can notice that the correlation with hemi-
spherical photography at-plot level was rather moderate. Better
results were achieved for WF1 with dataset-adjusted reflectance
ratio, despite the fact that the mean of those LAIe values was in
general lower than for WF2. Therefore, the dataset-adjusted reflec-
tance ratio helped to improve the correlation with the hemi-
photos. Furthermore, processing data in 5 m grid also improved
the level of correlation, especially for WF2, showing that small-
footprint data with aggregation area adjusted to the site hetero-
geneity may be advantageous for LAIe estimation in discontinuous
canopy environments. The paired two-tailed t-tests carried out on
the differences between each methods’ and hemispherical pho-
tography LAIes showed that despite its lower correlation, only
the mean of grid-processed WF2g was not significantly different
(at the 5% significance level) from the mean of hemi-photo LAIes,
providing a p-value of 0.67. The t-tests between LAIe estimates
with different reflectance ratio (WF1 vs. WF2, WF1g vs.WF2g) as
well as between plot-aggregated and grid-processed datasets
(WF1 vs. WF1g, WF2 vs. WF2g) showed that the change of reflec-
tance ratio or aggregation area causes the estimates to be signifi-
cantly different.

There are several possible reasons for moderate (although still
significant) correlation at plot-level, including the geo-coding
uncertainties and consequent difficulties in locating exactly the
same areas in LiDAR data as seen by the photography, as well as
shading effects in LiDAR as a result of different incidence angles.
Another potential error source is the fact that the LiDAR estimates
are calculated from a limited and exactly known area (cylinders),
whereas the hemi-photos do not have a specific footprint.
Further, a complete agreement between the two methods of LAIe



Fig. 7. Histograms of absolute differences between LiDAR and hemispherical photography LAIe estimates depending on the reflectance ratio and aggregation area used. The
method names denoted with letter ‘g’ correspond to grid-processed datasets.

Fig. 8. Plot-level regression of LiDAR LAIes against hemi-photo LAIes. (A) WF1 and WF1g with dataset-adjusted reflectance ratio; (B) WF2 and WF2g constant reflectance
ratio. The method names denoted with letter ‘g’ correspond to grid-processed dataset. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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estimation cannot be achieved due to different geometry of mea-
surements: a cylinder which passes down through the canopy for
LiDAR data and an upward looking cone for hemispherical pho-
tography (Solberg et al., 2006). Additionally, the hemispherical
photography LAIe values themselves may not well represent the
LAIe values in discontinuous canopies, and their acquisition condi-
tions (the sun present in some frames) could have introduced
estimation errors. Finally, the LAIe values over Gillenbah forest
are rather low. This means that for higher LAIe values the method
could potentially stabilise and provide better correlation with the
hemi-photo estimates.

4.1.2. Site-level
Site-level LiDAR LAIe estimates were derived in two ways: (1)

from the processing of LiDAR data within a 50 m radius from the
center of the central plots (‘Overall’ – denoted with letter ‘O’ e.g.
WF1O) and (2) from averaging the 15 m radius plot-level LiDAR
LAIes within each site (‘Average’ – denoted with letter ‘A’ e.g.
WF1A). The plots occupy a fraction of each site, as shown in
Fig. 1 (inset), so are not necessarily representative of the entire site.
Both options were performed on the site-aggregated as well as on
grid-processed datasets. Since the hemispherical photography LAIe
estimates were derived as mean values of plot-level estimates,
LiDAR site-level LAIe estimates derived in the same way
(‘Average’) provided better comparison (higher correlation values)
than estimates derived from 50 m cylinders (‘Overall’). Therefore
only those results (‘Average’) will be discussed further, however
the results for the ‘Overall’ method are also presented in figures
and tables for reference as they should provide better estimates
at site-level due to better coverage.
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The patterns discussed at plot-level were repeated at the site-
level still showing some level of underestimation of hemi-photo
values by LiDAR. The correlation between the LiDAR data and
hemi-photo estimates (Fig. 9), however, significantly improved at
site-level and the RMSE errors dropped in comparison to plot-level
values for both variants of the method. WF1A and WF1Ag yielded
the highest correlation values, reaching R2 of 0.83, yet again show-
ing the superiority of using a dataset-adjusted reflectance ratio
over a fixed ratio of 0.5, which in turn provided correlation of
0.59 and 0.76 for WF2A and WF2gA, respectively. The advantage
of small-footprint data for LAIe estimation in discontinuous canopy
environment was also confirmed at the site-level, especially in the
‘Overall’ approach to LAIe computation. As in the case of plot-level
data, only estimates of grid-processed WF2g site-level LAIe turned
out to be not significantly different to the hemi-photo values.
Fig. 9. Site-level regression of LiDAR LAIes against hemi-photo LAIe. (A) WF1 and WF1g w
The method names denoted with letter ‘g’ correspond to grid-processed dataset whereas
(For interpretation of the references to color in this figure legend, the reader is referred

Fig. 10. Example of CHPs generated for Site 42 in comparison to field biomass profiles for
references to color in this figure legend, the reader is referred to the web version of thi
Further, the tests between LAIe estimates with different reflectance
ratio (WF1A vs. WF2A, WF1g vs. WF2g) as well as between plot-ag-
gregated and grid-processed datasets (WF1A vs. WF1gA, WF2A vs.
WF2gA) showed that the change of reflectance ratio and aggrega-
tion area causes the estimates to be significantly different.

4.2. CHP Validation

Canopy height profiles (CHP) generated from LiDAR data with a
dataset-adjusted reflectance ratio (WF1) and a fixed reflectance
ratio of 0.5 (WF2) were compared to the field biomass profiles
modelled from field measured data. The comparison was con-
ducted at plot- and site-level for plot/site-aggregated and grid-pro-
cessed datasets using bin-wise ordinary least squares regression.
Fig. 10 shows an example of profiles generated for each of the five
ith dataset-adjusted reflectance ratio; (B) WF2 and WF2g constant reflectance ratio;
letter ‘A’ refers to the fact that the LAIe values were calculated as plot-level means.
to the web version of this article.)

the five 15 m-radius plots and the overall 50 m-radius site. (For interpretation of the
s article.)
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plots, as well as site-level CHP in site 42 for plot/site-aggregated
and grid-processed datasets with field profiles overlaid.

4.2.1. Plot-level
Fig. 11 shows the R2 values of regression between LiDAR CHP

and fieldwork-derived biomass profiles for all plots (grouped into
the 11 sites), depending on the reflectance ratio used, for plot-ag-
gregated and grid-processed datasets. The correlation between
field and LiDAR data is excellent in the case of all plots in Sites
17, 20, 30 and 42. In those sites R2 did not drop below 0.8 for
almost all plots and plot-aggregated and grid-processed profiles
provide very similar results. The only exceptions of correlation
lower than 0.8 in those sites were: plot 17E with correlation of
0.72 in plot-aggregated and 0.78 in grid-processed datasets and
plot 20S with correlation of 0.79 in grid processed datasets. The
reason for lower correlation in those plots could have been the fact
that neither of them had understory (in contrast to the remaining
plots) and they consisted of the lowest number of trees, which
would mean that the profiles would have been more sensitive to
e.g. geolocation errors.

The comparison for Site 38 was also very good with high
correlation values for most of the plots. The center and East plots
had the lowest though still significant (above 0.6) correlation val-
ues. Similarly, with the exception of the north and west plots, site
24 would have also been one of those with the highest correlations.
Site 10, in turn, yielded relatively consistent but somewhat lower
correlation values ranging from 0.6 to 0.8. While it is hard to tell
what could have been the reason for lower correlation in plot
38C and most of the plots of site 10, in the case of plots 38E, 24N
and 24W it could have as well been the low number of trees and
lack of understory that caused the drop in correlation values.
This seems to be confirmed by the fact that the grid-processed
dataset provided higher correlation values in those plots than
plot-aggregated data, by accounting for discontinuity of the canopy
cover. Furthermore, there were two tall shrubs and dead branches
in plot 24W, and a fallen tree and branches in plot 38E that were
Fig. 11. R2 values of CHP regression against field biomass profiles at plot-level in each si
used. The values on the x axis correspond to a plot within each site (C – Central, E – East,
figure legend, the reader is referred to the web version of this article.)
not taken into account in the generation of field biomass profiles
that could also have contributed to the lower correlation.

Sites 15, 23 and 67 were mostly quite inconsistent, with R2 val-
ues varying between close to zero and over 0.9. In those sites,
correlation values from plot-aggregated datasets differed the most
in comparison to grid-processed datasets, with the latter yielding
usually higher values. The lowest correlations were achieved for
plots 15C and 15N, where there were tree trunks and branches
on the ground, and plots 23C, 23S, and 67E, with relatively small
number of trees, in plot-aggregated datasets. With the exception
of plot 15C, the corresponding R2 values in grid-processed datasets
were moderate and mostly above 0.6.

Finally, the R2 values in site 99 were very low – between 0.2 and
0.6. There are several reasons for that. Site 99 had a relatively high
percentage of very tall E. microcarpa trees with diameters up to 8–
10 times larger than those of typical C. glaucophylla trees. This site
also had the highest number of dead trees (23%) in comparison to
other sites. Plots 99N and 99W, which yielded the lowest correla-
tion values, had the lowest number of trees (<25) and about 30% of
trees without measured CBHs. Plots 99E, 99S and 99W also had the
highest percentages of dead trees (26–27%). Since the dead trees in
Gillenbah forest were mostly just single trunks, they would have
been relatively easily missed by the near-vertical LiDAR beams,
whereas by being included in the field profiles, they could have fur-
ther contributed to the differences between field and LiDAR data.

Summarizing, the sites with the highest values of R2 in their
plots (sites: 17, 20, 30, 42) are the sites with the densest vegetation
and highest numbers of trees measured (over 210 trees). The only
exception is site 23 which also has dense vegetation (248 trees in
total) but somewhat lower correlation values. The reason for that
may again be the fact that this site has over 50% of crown base
heights not measured and tree heights estimated from allometric
equations making field biomass profiles less reliable. The plots
with the low correlation values typically have a low number
(<25) of trees measured (15C, 15N, 23C, 38E, 67E) or if the number
of trees is slightly higher (25–35) those plots usually include some
te for plot-aggregated and grid–processed datasets, with different reflectance ratios
N – North, S – South, W – West). (For interpretation of the references to color in this



Table 3
Mean plot-level and site-level R2 and RMSE of CHP regression against field biomass
profiles.

Method Reflectance ratio Plot-level Site-level
55 plots 11 sites

RMSE R2 RMSE R2

Plot/site-aggregated WF1 0.005 0.73 0.004 0.85
WF2 0.005 0.73 0.004 0.86

Grid-processed WF1 0.004 0.74 0.003 0.85
WF2 0.004 0.75 0.003 0.86

Fig. 12. R2 values of CHP regression against field biomass profiles at site-level for
grid-processed and site-aggregated datasets, with different reflectance ratios used.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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percentage of E. microcarpa trees (10C, 24W). This reiterates the
importance of accurate geo-location in the case of sparse canopies.

Table 3 summarizes the R2 and RMSE for each of the variants of
comparisons tested at plot-level. The mean R2 of 0.73 for 55 plots
was achieved regardless of reflectance ratio used in plot-aggre-
gated datasets. When grid-processed CHPs were compared the
average correlation slightly increased. Using a constant reflectance
ratio produced a further small improvement (0.75). The averaged
RMSEs were constant for all the comparisons with marginally
higher values for plot-aggregated datasets.

The t-tests carried out between LiDAR and field biomass profiles
at plot-level showed that all but one CHP plot, regardless of reflec-
tance ratio used or aggregation area, were not statistically signifi-
cantly different from field biomass profiles. The only exception was
the grid-processed profile of plot 20S generated with 0.5 ratio that
turned out to be significant different from field profile, while its
corresponding profile generated with a dataset-adjusted reflec-
tance ratio was on the border of significance. The comparison
between different reflectance ratios proved that the CHPs gener-
ated with dataset-adjusted reflectance ratio were not significantly
different (with p-values close to 1) to those obtained with fixed
ratio of 0.5, regardless of the aggregation area. When plot-aggre-
gated and grid-processed datasets were confronted, 27% of CHPs
with dataset-adjusted reflectance ratio and 27% of CHPs with fixed
ratio proved to be significantly different at 5% of significance level.
A further 7–8% were on the borderline of significance. Therefore,
about a third of grid-processed profiles showed some statistical
differences in comparison to their corresponding plot-aggregated
profiles, suggesting that in discontinuous canopy environments it
may be worth using small-footprint data with an aggregation area
size adjusted to capture the heterogeneity of vegetation in the
scene.
4.2.2. Site-level
The site-aggregated and grid-processed CHPs derived from the

50 m radius sites were compared to the field profiles. Fig. 12 pre-
sents correlation for each site for site-aggregated and grid-pro-
cessed datasets, with different reflectance ratios used, compared
to field biomass profiles, while Table 3 shows mean R2 and RMSE
values of 11 sites. The patterns of correlation were in general the
same as at plot-level, however, with a noticeable increase in R2.
The mean correlation at site-level was higher than the correspond-
ing mean plot-level R2 by 0.11–0.13. In the site-aggregated and
grid-processed datasets, the choice of site-adjusted or constant
reflectance ratio of 0.5 had no significant impact on the correlation
of the field and LiDAR data.

Both the site-aggregated and grid-processed datasets yielded
almost identical site-level correlation values with field biomass
profiles. Slightly higher mean R2 values of 0.86 were provided by
WF2 with a constant reflectance ratio, however WF1 with a data-
set-adjusted ratio yielded an only marginally worse value of 0.85.
The RMSEs also marginally improved in comparison to plot-level.
The t-tests between site-aggregated LiDAR CHPs and field profiles
confirmed the plot-level results that LiDAR profiles, regardless of
reflectance ratio used or aggregation area, were not significantly
different than field biomass profiles. The t-tests carried out
between CHPs generated with different reflectance ratios once
again proved no significant difference (p-values close to 1)
between the LiDAR profiles from WF1 and WF2 at site-level,
regardless of aggregation area. Comparison between site-aggre-
gated and grid-processed datasets, similarly to plot-level data,
showed that one third of the profiles generated in the 5 m grid
were significantly different to the corresponding site-aggregated
datasets.
5. Conclusions

This study has presented a validation of the Canopy Height
Profile methodology (based on Harding et al. 2001) for leaf area
index and vertical foliage retrieval, using small-footprint (0.2 m)
full-waveform airborne LiDAR data in a discontinuous canopy
cover environment, at plot (30 m diameter) and site-levels
(100 m diameter). The methodology has been enhanced to include
a dataset-adjusted reflectance ratio according to Armston et al.
(2013) and tested against a fixed ratio of 0.5. This study has also
looked at the influence of the aggregation area on LAIe and CHP
retrievals in discontinuous canopy cover environments by carrying
out calculations of LAIe and CHPs on grid-processed (5 m) and plot/
site-aggregated (15 m/50 m radius) datasets. The analyses have
shown that this methodology is relevant and suitable for its
purpose.

The LAIe extracted as an intermediate step of the methodology
was compared to hemispherical-photography estimates. The
analysis has shown that the method produced LAIe values which
were close to those of hemispherical photography with some
degree of underestimation. The correlation values were somewhat
moderate (however still significant) at the plot-level owing most
likely to geo-coding uncertainties and a lack of GPS measurements
of the hemispherical photography locations. At site-level the
correlation improved significantly. Due to the fact that hemi-photo
LAIe estimates at site-level were derived as a mean value of plot-
level LAIes, the comparison to LiDAR site-level estimates was
always better when the site-level LiDAR estimates were derived
in the same way, rather than from a cylinder with 50 m radius.
The highest R2 value of 0.83 at site-level was reached by WF1 with
dataset-adjusted reflectance ratio. Using a dataset-adjusted reflec-
tance ratio as opposed to a fixed ratio of 0.5 did considerably
improve the correlation with hemispherical photography values
both at plot- and site-level, proving the importance of accurate
estimation of the vegetation-ground reflectance ratio in LAIe
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estimation and the value of the Armston et al. (2013) methodology
for this application.

The influence of the aggregation area on LAIe estimates of dis-
continuous canopies was assessed by performing the calculation
of LAIe in 5 m by 5 m grids versus datasets aggregated to plot-
(15 m radius) and site-level (50 m radius). Gridding improved the
correlation between LiDAR and hemi-photo-derived LAIe estimates
both at plot- and site-level especially when fixed reflectance ratio
was used. The study has, therefore, shown that in the case of dis-
continuous canopies it is important to consider heterogeneity of
vegetation by choosing the aggregation size of LiDAR data that
enables depiction of its sparseness. This may suggest that for such
environments small-footprint LiDAR data (here with a footprint
diameter of 0.2 m) may be particularly suitable as they offer the
possibility of selecting a cylinder radius or grid size for aggregation
that ensures homogeneity of the area covered by it. Choosing an
aggregation area that is larger and does not depict the heterogene-
ity of vegetation or using LiDAR data with a footprint size that does
not allow for it will most likely lead to underestimation of the LAIe
due to the logarithmic transformation involved in the LAIe calcula-
tion. For areas with DTM variations and significant slopes, the use
of small-footprint LiDAR data would be even more advantageous as
it would help to avoid the influence of the terrain on the shape of
the received waveforms and in consequence inaccuracies in the
estimates. As a final remark, it is worth pointing out that due to
its better spatial coverage and less effort in terms of collecting data
LiDAR-based estimation of LAIe should provide better estimates
than hemispherical photography (Morsdorf et al., 2006;
Richardson et al., 2009).

Comparison of LiDAR CHPs to field biomass profiles generated
based on field measurements made at the time of LiDAR acquisi-
tion, has proven that this methodology is also appropriate for
description of the vertical distribution of vegetation. The correla-
tion between field and LiDAR profiles was very high and reached
a maximum mean R2 of 0.75 at plot-level and 0.86 at site-level
when 55 plots and the corresponding 11 sites were considered.
All LiDAR plot-level profiles but one and all site-level profiles were
also found to be not statistically significantly different (at 5% sig-
nificance level) to field biomass profiles. Unlike the results of the
LAIe determination, due to relative character of the CHP, using
dataset-adjusted or constant reflectance ratio had almost no
impact on the correlation of LiDAR with field biomass profiles
(the fixed ratio gave marginally better correlation by 0.01).
Furthermore, the profiles generated with different ratios were
found to be not significantly different between each other (with
p-values close to 1), regardless of the aggregation type and both
at plot- and site-level. In the case of the grid-processed datasets,
the correlation between LiDAR and field biomass data was usually
marginally higher (by 0.01–0.02) than that of plot/site-aggregated
datasets (both at plot- and site-level). Moreover, around one third
of the grid-processed LiDAR canopy height profiles were found to
be statistically significantly different from the corresponding
plot/site-aggregated profiles. This suggests that not only for LAIe
but also for foliage vertical profiles, using small-footprint airborne
data may be advantageous in discontinuous canopy environments.
Further experiments are, however, required in order to verify the
performance and the use of the methodology at denser forest areas
and at areas with a wider range of LAIe values.
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