2,543 research outputs found

    Non-Perturbative Models For The Quantum Gravitational Back-Reaction On Inflation

    Get PDF
    We consider a universe in which inflation commences because of a positive cosmological constant, the effect of which is progressively screened by the interaction between virtual gravitons that become trapped in the expansion of spacetime. Perturbative calculations have shown that screening becomes non-perturbatively large at late times. In this paper we consider effective field equations which can be evolved numerically to provide a non-perturbative description of the process. The induced stress tensor is that of an effective scalar field which is a non-local functional of the metric. We use the known perturbative result, constrained by general principles and guided by a physical description of the screening mechanism, to formulate a class of ansatze for this functional. A scheme is given for numerically evolving the field equations which result from a simple ansatz, from the beginning of inflation past the time when it ends. We find that inflation comes to a sudden end, producing a system whose equation of state rapidly approaches that of radiation. Explicit numerical results are presented.Comment: 50 pages, LaTeX 2 epsilon, 11 Postscript files, uses psfig.st

    Relational Reality in Relativistic Quantum Mechanics

    Full text link
    Up to now it has been impossible to find a realistic interpretation for the reduction process in relativistic quantum mechanics. The basic problem is the dependence of the states on the frame within which collapse takes place. A suitable use of the causal structure of the devices involved in the measurement process allows us to introduce a covariant notion for the collapse of quantum states.Comment: 4 pages, final version accepted for publication in Phys. Lett.

    Schrieffer-Wolff transformation for quantum many-body systems

    Full text link
    The Schrieffer-Wolff (SW) method is a version of degenerate perturbation theory in which the low-energy effective Hamiltonian H_{eff} is obtained from the exact Hamiltonian by a unitary transformation decoupling the low-energy and high-energy subspaces. We give a self-contained summary of the SW method with a focus on rigorous results. We begin with an exact definition of the SW transformation in terms of the so-called direct rotation between linear subspaces. From this we obtain elementary proofs of several important properties of H_{eff} such as the linked cluster theorem. We then study the perturbative version of the SW transformation obtained from a Taylor series representation of the direct rotation. Our perturbative approach provides a systematic diagram technique for computing high-order corrections to H_{eff}. We then specialize the SW method to quantum spin lattices with short-range interactions. We establish unitary equivalence between effective low-energy Hamiltonians obtained using two different versions of the SW method studied in the literature. Finally, we derive an upper bound on the precision up to which the ground state energy of the n-th order effective Hamiltonian approximates the exact ground state energy.Comment: 47 pages, 3 figure

    An anthology of non-local QFT and QFT on noncommutative spacetime

    Full text link
    Ever since the appearance of renormalization theory there have been several differently motivated attempts at non-localized (in the sense of not generated by point-like fields) relativistic particle theories, the most recent one being at QFT on non-commutative Minkowski spacetime. The often conceptually uncritical and historically forgetful contemporary approach to these problems calls for a critical review the light of previous results on this subject.Comment: 33 pages tci-latex, improvements of formulations, shortening of sentences, addition of some reference

    Cardiac auscultation training of medical students: a comparison of electronic sensor-based and acoustic stethoscopes

    Get PDF
    BACKGROUND: To determine whether the use of an electronic, sensor based stethoscope affects the cardiac auscultation skills of undergraduate medical students. METHODS: Forty eight third year medical students were randomized to use either an electronic stethoscope, or a conventional acoustic stethoscope during clinical auscultation training. After a training period of four months, cardiac auscultation skills were evaluated using four patients with different cardiac murmurs. Two experienced cardiologists determined correct answers. The students completed a questionnaire for each patient. The thirteen questions were weighted according to their relative importance, and a correct answer was credited from one to six points. RESULTS: No difference in mean score was found between the two groups (p = 0.65). Grading and characterisation of murmurs and, if present, report of non existing murmurs were also rated. None of these yielded any significant differences between the groups. CONCLUSION: Whether an electronic or a conventional stethoscope was used during training and testing did not affect the students' performance on a cardiac auscultation test

    Effective spin model for interband transport in a Wannier-Stark lattice system

    Full text link
    We show that the interband dynamics in a tilted two-band Bose-Hubbard model can be reduced to an analytically accessible spin model in the case of resonant interband oscillations. This allows us to predict the revival time of these oscillations which decay and revive due to inter-particle interactions. The presented mapping onto the spin model and the so achieved reduction of complexity has interesting perspectives for future studies of many-body systems.Comment: 7 pages, 4 figure

    Geometrization of Quantum Mechanics

    Full text link
    We show that it is possible to represent various descriptions of Quantum Mechanics in geometrical terms. In particular we start with the space of observables and use the momentum map associated with the unitary group to provide an unified geometrical description for the different pictures of Quantum Mechanics. This construction provides an alternative to the usual GNS construction for pure states.Comment: 16 pages. To appear in Theor. Math. Phys. Some typos corrected. Definition 2 in page 5 rewritte

    The Quantum Gravitationally Induced Stress Tensor

    Get PDF
    We derive non-perturbative relations between the expectation value of the invariant element in a homogeneous and isotropic state and the quantum gravitationally induced pressure and energy density. By exploiting previously obtained bounds for the maximum possible growth of perturbative corrections to a locally de Sitter background we show that the two loop result dominates all higher orders. We also show that the quantum gravitational slowing of inflation becomes non-perturbatively strong earlier than previously expected.Comment: 13 pages, LaTeX 2 epsilo
    • …
    corecore