302 research outputs found

    Evolutionary-thinking in agricultural weed management

    Get PDF
    Agricultural weeds evolve in response to crop cultivation. Nevertheless, the central importance of evolutionary ecology for understanding weed invasion, persistence and management in agroecosystems is not widely acknowledged. This paper calls for more evolutionarily-enlightened weed management, in which management principles are informed by evolutionary biology to prevent or minimize weed adaptation and spread. As a first step, a greater knowledge of the extent, structure and significance of genetic variation within and between weed populations is required to fully assess the potential for weed adaptation. The evolution of resistance to herbicides is a classic example of weed adaptation. Even here, most research focuses on describing the physiological and molecular basis of resistance, rather than conducting studies to better understand the evolutionary dynamics of selection for resistance. We suggest approaches to increase the application of evolutionary-thinking to herbicide resistance research. Weed population dynamics models are increasingly important tools in weed management, yet these models often ignore intrapopulation and interpopulation variability, neglecting the potential for weed adaptation in response to management. Future agricultural weed management can benefit from greater integration of ecological and evolutionary principles to predict the long-term responses of weed populations to changing weed management, agricultural environments and global climate

    Open Sequence Initiative: a part submission standard to complement modern DNA assembly techniques

    Get PDF
    The discipline of synthetic biology emphasizes the application of engineering principles such as standardization, abstraction, modularity, and rational design to complex biological systems. The archetypical example of such standardization is BioBrick RFC[10], introduced in 2003 by Tom Knight at MIT. BioBricks are stored on a standard plasmid, pSB1C3, which contains prefix and suffix sequences flanking the DNA sequence specifying a biological part. The prefix and suffix sequences contain two pairs of 6 base-pair (bp) restriction enzyme sites (EcoRI+XbaI and SpeI+PstI), which can be used for both part assembly and quality control. BioBricks are intended to be well- characterized biological parts, such as genes or promoters, that function in a predictable fashion and can be readily combined to make complex systems. The rules of the RFC[10] BioBrick assembly method require that none of the restriction sites used in the prefix and suffix be present in the parts themselves. This requirement can be an onerous imposition for iGEM teams developing large, novel parts, such as genes or entire operons that are obtained by amplifying DNA sequences from environmental samples or microorganisms. While iGEM teams may use methods such as site-directed mutagenesis to remove illegal restriction sites from a part's sequence, it is certainly possible that this mutation will alter the functionality of the part – a very undesirable outcome. In addition, the mutagenesis of illegal restriction sites is an unnecessary burden on teams, given the limited time and resources available to teams during each year’s iGEM competition. Efforts spent mutagenizing sites would be better spent characterizing and improving parts. This RFC proposes an alternative submission standard to eliminate these problems

    Transdisciplinary weed research: new leverage on challenging weed problems?

    Get PDF
    Transdisciplinary weed research (TWR) is a promising path to more effective management of challenging weed problems. We define TWR as an integrated process of inquiry and action that addresses complex weed problems in the context of broader efforts to improve economic, environmental and social aspects of ecosystem sustainability. TWR seeks to integrate scholarly and practical knowledge across many stakeholder groups (e.g. scientists, private sector, farmers and extension officers) and levels (e.g. local, regional and landscape). Furthermore, TWR features democratic and iterative processes of decision-making and collective action that aims to align the interests, viewpoints and agendas of a wide range of stakeholders. The fundamental rationale for TWR is that many challenging weed problems (e.g. herbicide resistance or extensive plant invasions in natural areas) are better addressed systemically, as a part of broad-based efforts to advance ecosystem sustainability, rather than as isolated problems. Addressing challenging weed problems systemically can offer important new leverage on such problems, by creating new opportunities to manage their root causes and by improving complementarity between weed management and other activities. While promising, this approach is complicated by the multidimensional, multilevel, diversely defined and unpredictable nature of ecosystem sustainability. In practice, TWR can be undertaken as a cyclic process of (i) initial problem formulation, (ii) ‘broadening’ of the problem formulation and recruitment of stakeholder participants, (iii) deliberation, negotiation and design of an action agenda for systemic change, (iv) implementation action, (v) monitoring and assessment of outcomes and (vi) reformulation of the problem situation and renegotiation of further actions. Notably, ‘purposive’ disciplines (design, humanities and arts) have central, critical and recurrent roles in this process, as do integrative analyses of relevant multidimensional and multilevel factors, via multiple natural and social science disciplines. We exemplify this process in prospect and retrospect. Importantly TWR is not a replacement for current weed research; rather, the intent is to powerfully leverage current efforts
    • …
    corecore